
A visualiser for linear λ-terms as
3-valent rooted maps

George Kaye

1522391

Summer 2019

Supervisor: Noam Zeilberger

School of Computer Science

MSci in Computer Science

CONTENTS

Contents

1 Abstract 3

2 Acknowledgements 4

3 Introduction 5
3.1 Motivation . 5
3.2 λ-term visualiser . 5
3.3 λ-term gallery . 6
3.4 Report structure . 6

4 Background 8
4.1 The λ-calculus . 8

4.1.1 De�nitions . 8
4.1.2 β-reduction . 9
4.1.3 Fragments of the λ-calculus 9

4.2 Graphs and maps . 11

5 Specification 14
5.1 A graphical representation of λ-terms 14

5.1.1 Parsing terms from user input 14
5.1.2 Visualising terms . 14

5.2 Generating λ-terms from a given fragment 15
5.3 Studying normalisation properties of fragments 15

6 Implementation 16
6.1 Language . 16
6.2 Implementing the λ-calculus in Javascript 16
6.3 Parsing terms from user input . 17
6.4 Drawing the terms . 18
6.5 Counting and generation functions 23
6.6 The gallery . 24
6.7 λ-term ‘portraits’ . 25
6.8 Interacting with β-redexes . 27
6.9 Normalisation graphs . 28
6.10 Animating normalisation . 31
6.11 Finishing touches . 32

7 Features and Examples 33
7.1 Drawing λ-terms . 33
7.2 Normalisation . 33
7.3 Example: Boolean circuits . 40

1

CONTENTS

7.4 Generating� -term galleries . 40
7.5 Example: Testing conjectures . 42

8 Testing 45
8.1 Parsing terms from user input . 45
8.2 Visualising terms . 45
8.3 Generating� -terms from a given fragment 46
8.4 Investigating normalisation properties of fragments 46

9 Evaluation 47
9.1 Achievements . 47
9.2 Performance issues . 47

9.2.1 Lag experienced with larger terms 48
9.2.2 Delays in generating large galleries and graphs 48

9.3 Comparison with other visualisation software 49
9.4 Future development . 50

9.4.1 Polishing the layout . 50
9.4.2 Experimenting with APIs . 51
9.4.3 Smoothly animated reductions 51
9.4.4 Better display of normalisation graphs 51
9.4.5 Rehaul map-drawing algorithm 51
9.4.6 Improve generation functions 51
9.4.7 Combinatorial maps . 52

10 Project management 53
10.1 Project structure . 53
10.2 Project log . 54
10.3 Supervisor meetings . 54
10.4 Version control . 54

11 Conclusion 55

A File structure 58
A.1 root { Main �les . 58
A.2 docs directory { Documentation . 58
A.3 src directory { Source code . 58
A.4 pics directory { Images . 59
A.5 tests directory - Unit tests . 59

B Project log 60

2

1. ABSTRACT

1 Abstract

This report details the development of a set of tools inJavascript to aid in the
research of the topological properties of linear� -terms when they are represented
as 3-valent rooted maps. A� -term visualiser was developed to visualise a� -term
speci�ed by the user as a rooted map on the screen. The visualiser also includes
functionality related to normalisation of terms, such as the option to view a normal-
isation graph or reduce a term to its normal form. To complement this a� -term
gallery was created to generate� -terms that satis�ed criteria speci�ed by the user,
and display their corresponding maps. While the focus of the project was on linear
� -terms, these tools also work for all pure� -terms. The tools can be used for a
variety of di�erent applications, such as examining the structure of di�erent terms,
disproving conjectures regarding various subsets of the� -calculus, or investigating
special normalisation properties held by di�erent sets of� -terms. We evaluate the
tools' success and acknowledge that while the tools su�er from performance issues
when used for larger terms, they still ful�l many of the original aims of the project,
and may still be very useful for systematic exploration of the� -calculus in the future.

Keywords: � -calculus, normalisation, rooted maps, topology, combinatorics

Note on the content of this report

Some of this report has been based on the content written in my Scienti�c Paper
(Kaye, 2018b).

Source code

The source code for this project can be found athttps://git-teaching.cs.bham.
ac.uk/mod-ug-proj-2018/gjk591 .

3

2. ACKNOWLEDGEMENTS

2 Acknowledgements

Thanks to my supervisor, Noam Zeilberger, for his guidance and support throughout
this project, especially by introducing many of the background concepts required.
Thanks also to my friends at university and my family at home, for keeping me going
throughout the year.

4

3. INTRODUCTION

3 Introduction

3.1 Motivation

There are many links between the� -calculus and areas of mathematics and computer
science. One such area is graph theory { we can draw� -terms as graphs on surfaces,
which are also known as maps. We can then observe how the topological properties of
these maps link with the computational and logical properties of the original terms.

The idea of representing general� -terms as graphs is not new - Wadsworth (1971)
and Statman (1974) studied it for their PhD theses. One of the most common ways
of representing� -terms is by an abstract syntax tree (Erwig, 1998), with nodes rep-
resenting abstractions and applications { an example of this is shown in Figure 1.
Numerous other ways of representing� -terms have been developed, using nested
structures (Citrin et al., 1995), bubbles (Massal~ogin, 2008) or even as a game involv-
ing alligators (Victor, 2007)!

It is only more recently that links have been uncovered between thelinear � -
calculus and the combinatorics of rooted maps (Bodini et al., 2013). Every linear
� -term corresponds to a unique 3-valent rooted map, and the number of maps that
exist for di�erent families of � terms can form known sequences (Zeilberger, 2016).
It can be interesting to draw out these di�erent maps and examine the topological
properties shared between� -terms.

However, performing experimental mathematics with� -terms and their maps can
be a time-consuming process. While there are several examples of software developed
for visualising � -terms (e.g. Bharadwaj (2017), Massal~ogin (2008), Thyer (2007)),
there do not appear to have been any implementations that attempt to represent
� -terms as their corresponding rooted maps. Therefore, the main motivation of this
project was to develop tools that could be used to generate these maps, reducing the
time needed to draw these maps so that more time can be spent on actual research.

There were two tools developed: a� -term visualiser and a � -term gallery .

3.2 � -term visualiser

The �rst tool can generate maps for� -terms from user input, in addition to calculating
interesting properties such as crossings. An example of the visualiser in use can be
seen in Figure 2. By visualising the� -terms it can become much easier to understand
the structure of more complex structures implemented in the� -calculus (such as
pairs). While linear � -terms were the main focus during development, steps were
taken to ensure that any pure� -term could be represented in some way, so as not to
reduce the applications of the tool.

The visualiser also has functionality relating to the normalisation of terms. The
� -redexes contained within the term are listed, and by clicking on these the user can
reduce the term to its normal form (if one exists). A normalisation graph can also

5

3. INTRODUCTION

Figure 1: A representation of the term�x:�y:�z:x (y z) as an abstract syntax trees,
with pointers representing the use of abstracted variables.

be generated, which can be useful when investigating how normalisation properties,
such as complexity, di�er between di�erent subsets of the� -calculus.

3.3 � -term gallery

When studying properties of� -terms, it can be useful to generate terms and look for
interesting properties shared between terms and their maps. However it can be tricky
to come up with terms with certain properties (e.g. a speci�c number of subterms) on
the
y. The � -term gallery can generate all terms of a certain size and number of free
variables, with the ability to �lter based on properties such as crossings or� -redexes.
This makes disproving conjectures by �nding counterexamples a much easier process.
An example of a� -term gallery can be seen in Figure 3.

From the gallery, the user can inspect the generated terms using the visualiser,
with the same functionality present as detailed above.

3.4 Report structure

The rest of the report is structured as follows. Section 4 provides the necessary
background information for the project. Section 5 details the requirements for the
tools to be a success, and Section 6 details the implementation choices that went into
developing the tools to �t this speci�cation. Section 7 covers the features in the �nal
version of the tools along with some examples of how they could be used and Section
8 details the testing strategy used. Section 9 evaluates the success of the project,
and Section 10 details how the project was managed. Appendix A details the �le
structure of the submitted ZIP �le and Appendix B summarises the logs detailing the
status of the project each week.

6

3. INTRODUCTION

Figure 2: The � -term visualiser, representing the term from Figure 1 as a 3-valent
rooted map, along with some properties of the map on the right.

Figure 3: The � -term gallery, displaying all closed linear terms of size 5.

7

4. BACKGROUND

4 Background

This section will cover some concepts and terminology that will be used in the re-
mainder of the report.

4.1 The � -calculus

The � -calculus is a model of computation where programs are represented by variable
abstraction and function application. It is the basis of all functional programming
languages.

4.1.1 De�nitions

The simplest terms in the� -calculus (� -terms) are just variables (x; y; z; :::). More
complex terms can be created using the operations ofabstraction (�x:t) and appli-
cation (t1t2). For clearer notation, applications are left-associative and abstractions
extend as far to the right as possible:

x y z � (x y) z

�x:x �y:y � (�x:x (�y:y))

Variables in the� -calculus can bebound or free. A variable is bound if it is inside the
scope of a corresponding� -abstraction (i.e. it is a local variable), or free otherwise.
For example, in �x:x y , the x is bound but the y is free. A � -term with no free
variables is called aclosed term . Two � -terms are said to be� -equivalent if the
only di�erence between them is the names of their bound variables { for example,
�x:x and �y:y are � -equivalent. The process of renaming bound variables is known
as � -conversion :

�x:t ! � �y:t [x 7! y]

To avoid ambiguity between� -equivalent terms, we can usede Bruijn notation .
Rather than using explicit variable names, each variable is instead represented by
how `far away' the corresponding abstraction is { how many lambdas one has to
pass through to �nd the right one. For example,�x:�y:�z:x y z can be written as
� � � 2 1 0. This eliminates the need for� -conversion, and makes it much easier to
implement checking for equality between� -terms.

� -terms contain a number ofsubterms , de�ned as:

subterms(x) = 1

subterms(�x:t) = 1 + subterms(t)

subterms(t1t2) = 1 + subterms(t1) + subterms(t2)

8

4. BACKGROUND

4.1.2 � -reduction

Program execution in the� -calculus is performed through� -reduction { applying
functions to their arguments. A term of the form (�x:t) u is called a� -redex and
can be� -reduced as follows:

(�x:t) u ! � t[x 7! u]

Repeatedly performing� -reduction on a term until it contains no � -redexes is known
as normalisation . A term with no � -redexes is in itsnormal form . The normal
form of a � -term is necessarily unique if it exists { the order that� -redexes are
chosen does not matter. This is known as theChurch-Rosser theorem (Church
and Rosser, 1936). However computing if normalising a pure term will terminate is
undecidable (Church, 1936). This is because attempts to reduce a� -term may lead
to a loop, or just continuous expansion. One well-known example is the
 term:

 = (�x:x x)(�x:x x) ! � (x x)[x 7! (�x:x x)] � (�x:x x)(�x:x x) �

When it is possible to get stuck in one of these normalisation loops, the order of
reduction actually can matter. This is shown in the example below, where reducing
redex 1 leads to a new term whereas redex 2 leads to the same term:

T = (�x:�y:x) a
| {z }

redex 1

((�x:x x)(�x:x x))
| {z }

redex 2

T ! � 1 (�y:a)((�x:x x)(�x:x x)) ! � a

T ! � 2 (�x:�y:x) a ((�x:x x)(�x:x x)) � T

The choice of which redex to reduce is related toevaluation strategies . Choosing
the outermost reduction corresponds tonormal order evaluation, in which argu-
ments are substituted into a function before they are evaluated. Conversely, choosing
the innermost reduction corresponds toapplicative order evaluation, where ar-
guments are fully evaluated before being applied to functions. Always choosing the
outermost reduction is guaranteed to �nd the normal form if it exists. This is not
the case for choosing the innermost reduction since an argument that is not used in
a function could contain a normalisation loop.

The process of normalisation can be represented bynormalisation graphs ,
which show the various paths between a� -term and its normal form. Several nor-
malisation graphs can be seen in Figure 4.

4.1.3 Fragments of the � -calculus

The pure � -calculus contains all terms formed from combining variables, abstrac-
tions and applications. However we can restrict ourselves to smallerfragments of the

9

4. BACKGROUND

Figure 4: Several examples of normalisation graphs, showing how di�erent terms can
have paths of di�erent lengths, diverging paths or normalisation loops.

� -calculus. Thelinear � -calculus is a subset of the pure� -calculus containing terms
in which variables are used exactly once { this is useful when considering scenarios
involving resource management, or for use with linear logic. Theplanar � -calculus
is a subset of the linear� -calculus in which variables are used in the order they are
abstracted in. Examples of terms from these di�erent fragments are shown in Table
1.

Linear and planar terms have special properties relating to normalisation. Lin-
earity and planarity are preserved by� -reduction, and all linear and planar� -terms
have a computable normal form. This is because as each variable in a linear term
only occurs once, terms can only get smaller with each� -reduction { they cannot
`blow up'. Similarly, all paths to the normal form are the same length { because all
abstracted variablesmust be used, there are no `shortcuts' to the normal form by
choosing a speci�c redex.

It can be shown that the normal form of a linear� -term is computable in polyno-
mial time. To normalise a linear term, a search must be performed through the term
to try and �nd a � -redex (�x:t) u. Inside this � -redex, there will only need to be one
substitution { replacing the single occurrence of the abstracted variablex in t with
the applied subtermu. Using the de�nitions of subterms(t):

subterms((�x:t)u) = 1 + (1 + subterms(t)) + subterms(u)) (1)

subterms(t[x 7! u]) = subterms(t) � 1 + subterms(u) (2)

By subtracting 2 from 1, we can see that the number of subterms always shrinks

10

4. BACKGROUND

Term Pure Linear Planar
�x:x Yes Yes Yes

�x: (�y:y) x Yes Yes Yes
�x:�y:x y Yes Yes Yes
�x:�y:y x Yes Yes No

�x:x x Yes No No
�x:�y:x Yes No No

Table 1: Examples of terms in various fragments of the� -calculus.

Figure 5: These two diagrams represent the same graph but two distinct maps (the
ordering of edges around the point on the circle is changed). Adapted from Lando
and Zvonkin (2013).

by three in a � -reduction. Therefore, the most reductions that a linear� -term can
have before reaching a normal form (i.e. if the term reduces to a lone variable with
one subterm) isn

3 . In the `worst case' scenario, a program attempting to normalise a
linear � -term would have to normalisen terms, taking n

3 operations each time. So the
upper bound of complexity of normalising linear� -terms in in O(n2) { polynomial
time.

It has also been shown by Mairson (2004) that normalising linear� -terms is
PTIME-complete, by encoding boolean circuits as� -terms. By reducing the Cir-
cuit Value Problem (known to be PTIME-complete) to normalising linear� -terms,
this proves that the latter is also PTIME-complete.

Since all planar terms are also linear terms, they share this upper bound of nor-
malisation complexity. However, there may be a lower bound of complexity that is
unknown to us. We cannot use Mairson's boolean circuits to prove this since the
functions are not planar. Studying the normalisation properties of planar terms is a
possible use for the tools developed in this project, such as by examining the normal-
isation graphs generated from these terms.

4.2 Graphs and maps

In graph theory, a graph is a set of nodes and edges that link pairs of nodes. When
these graphs areembedded onto a surface they are calledmaps. Unlike graphs,
the order of edges around a node is important for maps, and the same graph can

11

4. BACKGROUND

Figure 6: An example of how a graph with crossings can be embedded onto a torus.
From Zeilberger (2018).

Figure 7: A 3-valent map, and the same map but rooted (root indicated by the white
node)

be represented as many di�erent maps (an example is shown in Figure 5). A map
has agenus which is how many `holes' the surface it is embedded into has.Planar
maps are maps with no crossings of edges { they have a genus of 0. A map can be
represented as a set of nodes, half-edges, and permutations representing the order
of half-edges around nodes, pairs of half-edges that form edges, and faces formed
between edges. This representation is known as acombinatorial map , and more
about them can be found in Zeilberger (2016).

In this project we are particularly interested with rooted 3-valent maps . The
valency of a node is how many edges connect to it - maps where all of the nodes have
a valency of 3 are called3-valent . We can make arooted map by adding a `special'
node (the root) that connects to the map at one point, such as in the example in
Figure 7.

We can represent� -terms as maps, with abstractions and applications represented
by nodes, as shown in Figure 8. We can think of the ordering of edges around nodes
in term of their types.

For an abstraction node the edges
ow anti-clockwise:

� The full abstraction �x:t
owing out :: (A -> B)

� The abstracted variablex
owing out :: A

� The body of the abstractiont
owing in :: B

For an application node the edges
ow clockwise:

12

4. BACKGROUND

Figure 8: An abstraction and an application, represented as nodes of a map.

Figure 9: A representation of the term�x:�y:�z:x (y z) as a rooted 3-valent map,
without and with node labels. From Zeilberger (2016).

� The function t
owing in :: (A -> B)

� The argument u
owing in :: A

� The application t(u)
owing out :: B

With the addition of a root to represent the start of the term, these nodes can be
combined to create a rooted map, as shown in Figure 9.

There are several bijections between fragments of the� -calculus and families of
maps (Zeilberger, 2016). One already mentioned is the bijection between closed linear
� -terms and rooted 3-valent maps. Rooted planar maps also form a bijection with
closed planar� -terms.

13

5. SPECIFICATION

5 Speci�cation

This section details the requirements for the tools to be a success, using the three
main parts of the project detailed in the Proposal (Kaye, 2018a).

5.1 A graphical representation of � -terms

5.1.1 Parsing terms from user input

The tools must be able to parse user input into� -terms.

Correctness All valid user input must be parsed into the correct� -term.

Reliability The parser should not crash upon receiving bad input (e.g. mismatched
brackets), and should instead return some sort of parse error.

5.1.2 Visualising terms

The tools must be able to generate the corresponding rooted map for a� -term spec-
i�ed by the user.

Correctness The generated maps must accurately represent the� -term entered by
the user. The ordering of edges around nodes is the most important point to
consider here since di�erent ordering of edges can lead to completely di�erent
maps.

Clarity The generated maps must be easy to understand by the user. This means
that the elements should not be cramped together but laid out clearly on the
screen so that it is easy to identify the individual parts of the map.

Consistency The maps should be generated in such a way that similar terms gen-
erate similar maps { there should be a consistent structure throughout. This
means that it is easy to observe the di�erences between terms since they will
stand out.

Performance The maps should be generated in a suitable time.

Completeness The visualiser must be able to ful�l these criteria forall � -terms,
whether pure, linear or planar. This will mean that the visualiser can be used
for many di�erent applications, not just for investigating a particular subset of
the � -calculus.

Aesthetics A somewhat minor point, but it would be a bonus if the generated maps
were pleasing to look at, so the user feels compelled to generate more and keep
up their research.

14

5. SPECIFICATION

5.2 Generating � -terms from a given fragment

The tools must be able to generate galleries containing the rooted maps representing
� -terms that ful�l speci�ed criteria.

Completeness The generator must returnall terms that match the criteria speci�ed
by the user.

Soundness All terms generated must satisfy the criteria speci�ed by the user.

Clarity The generated terms should be set out in a way that is easy for the user to
understand (e.g. laid out in a grid on the screen).

Performance The � -term galleries should be generated in a suitable amount of time.

5.3 Studying normalisation properties of fragments

The tools must be able to display the� -redexes contained within a term, perform
these redexes, and generate the normalisation graphs for terms.

Correctness Any performed � -redexes must lead to the correct term. Generated
normalisation graphs must display the correct edges leading to the correct nodes,
ensuring that redexes that lead to the same term also point to the same node
on the graph.

Completeness All � -redexes in a term must be found and displayed. The normali-
sation functionality must be usable on all terms in the same way, regardless of
the number or location of� -redexes. For terms with in�nite reduction graphs,
a portion of the graph should be shown.

Performance The normalisation graphs should be generated in a suitable amount
of time.

15

6. IMPLEMENTATION

6 Implementation

This section will cover the implementation of the tools, and issues that rose.

6.1 Language

To implement the tools, I decided to useJavascript . This was so the tools could be
distributed as `web apps' and hosted on a website rather than having to be downloaded
and relying on any dependencies.

6.2 Implementing the � -calculus in Javascript

The �rst step in the project was to implement the � -calculus in Javascript , as
a basis for the rest of the project to build on. The implementation was partially
based on theML examples developed by Pierce (2002). The three types of� -term
(variables, applications and abstractions) are implemented asJavascript classes.
Variables are stored as de Bruijn indices { this means that it is trivial to tell if terms
are identical without having to perform � -conversion. Abstractions and applications
are constructed as combinations of subterms, so complete� -terms are represented as
trees, where nodes may have zero (for variables), one (for abstractions) or two (for
applications) children. Functionality was added later in the project so that terms
can be associated with analias to save time when writing out large expressions (for
example, the aliasid for the identity function �x:x). An example of how terms can
be represented can be seen in Figure 10.

Since terms often contain free variables, a class to represent the context of a term
was also created. This was e�ectively a wrapper for an array that contained the labels
of terms currently in the context, with some extra methods to make manipulating it
easier, such as determining a label from a given de Bruijn index.

Printing the � -terms proved to be more nuanced than expected. The de Bruijn
representation of a term is constant and easy to print by traversing the� -term tree
recursively. However it is not very readable (especially in large terms) { traditional
labelled terms are much more intuitive. Originally variables stored a `label' that could
be printed instead of the index, but this proved to be quite buggy and often variables
and their corresponding abstractions would display di�erent labels (e.g. after� -
conversion). To �x this, labels were restricted to just abstractions, and when printing
these labels would be added to a context. When the variables were to be printed,
the index of the term would be looked up in the context and the appropriate label
retrieved. This would ensure consistency (and subsequently correctness) throughout
the term.

When implementing the normalisation functionality, it became apparent that some
sort of � -conversion would still need to be implemented to avoid clashes of variables in
the printed labels. A function was implemented to generate a `canonical' set of labels,

16

6. IMPLEMENTATION

const y = new LambdaVariable(0);
const x = new LambdaVariable(1);
const app = new LambdaApplication(y, x);
const abs1 = new LambdaAbstraction(app,
y
);
const abs2 = new LambdaAbstraction(abs,
x
,
swap
);

abs2.prettyPrint(); // prints \ \ 0 1

Figure 10: How the functionswap= �x:�y:y x can be constructed in theJavascript
implementation.

to ensure that each variable name was only used once in the term. This worked by
renaming all free variables in the context toa; b; :::, and then traversing the term and
replacing the label associated with each abstraction with a new one fromx; y:::. For
example, the term (�d: (�h:h d) h) g with free variablesh and g would be� -converted
to �x: (�y:y x) a) b. This would also be used when generating normalisation graphs
later on { redexes that led to� -equivalent terms would have a consistent set of labels
rather than juggling many di�erent representations. For example, both redexes in
(�x: (�y:y) x)(�z:z) reduce to the same term in de Bruijn notation (� 0)(� 0), but with
di�erent labels. In the normalisation graph, the term is� -converted to its `canonical'
labelling.

6.3 Parsing terms from user input

Initially the parser would iterate through the user input one character at a time,
making note of `special' characters (e.g. a backslash to represent a� -abstraction,
or an opening bracket to indicate the start of a subterm). It would then create the
� -term objects as it went from left to right. However the original parsing algorithm
grew quite confusing, as it had to keep track of many di�erent states (e.g. if an
abstraction was in progress), and checking for syntax errors had to occur in many
di�erent places.

To make the process more less convoluted, parsing was split into two distinct parts,
Firstly, the the input would be split into di�erent tokens (e.g. �var: (�y:y) var =)
[n,var,(, n,y,),var)]) by iterating over characters in the input, creating a new
token when encountering a special character or a space. The second part was the
actual parsing phase where these tokens would be formed into actual� -terms. The
bene�t of tokenising �rst is that syntax errors (such as mismatched brackets or missing
abstraction variables) are caught during this phase, and the parser can iterate over
tokens without having to worry about malformed terms. This also simpli�es dealing
with variables longer than one character, since they can be stored as one token.

This means that the only `special characters' the parser needs to check for are

17

6. IMPLEMENTATION

(and) for subterms, andn for abstractions. Everything else is a variable, and
adjacent tokens/subterms represent applications. When an abstraction or subterm is
encountered, their scope is determined by �nding the appropriate closing bracket (or
the end of the term), and the parse function called recursively on the tokens within
the scope. This continues until no tokens are left. To extend the parser to handle
aliases, all that had to be added was to check tokens against the list of existing aliases,
and insert the corresponding function body if one existed, rather than treating the
token as a new variable.

6.4 Drawing the terms

To create the elements in the maps, the� -term tree is traversed recursively. New
node objects are created when encountering an abstraction or application, with an
edge leading to the previous parent node. When an abstraction is found, theid of
the abstraction node is stored in a context. When a variable is found, this context is
searched to �nd the corresponding abstraction node { an edge is then drawn between
this node and application node where the variable is used. The array of map elements
is then passed to theCytoscape API (http://js.cytoscape.org/) which gener-
ates the map. This API was chosen because it appeared to have lots of functionality
for displaying and customising graphs on the screen, and it was simple to set up and
use.

Developing a suitable way of drawing the� -term maps was the �rst major problem
in the project. Drawing correct maps by hand is quite intuitive as one can place nodes
and their edges `on the
y' so that they do not cross over. However implementing
an algorithm for a computer to generate these maps is signi�cantly more di�cult.
Algorithms that work for some maps may not work for others, so a strategy that
generates consistent maps is required. Figures 11 and 12 show how the drawn map
for two di�erent terms evolved over time.

Initially maps were generated using a default layout provided by the graph drawing
API (1). This placed nodes in a circle and drew the edges as the shortest path between
pairs of nodes. While this representation looked tidy, it did not preserve the cyclical
order of edges around nodes, so the generated maps were not correct. This was due to
the edges representing the use of abstracted variables `cutting across' the map rather
than exiting nodes at the right position. This caused crossings to occur for planar
term maps (such as in Figure 11.1). Since edges were always straight unless there
were duplicate edges between two nodes, incorrect crossings would also be generated
when an edge should have curved around a node to `dodge' an edge but instead cut
straight through it. It was clear from this method that node positions would have to
be explicitly set to ensure the correctness of these maps.

In the next algorithm (2), nodes were placed progressively further up the page,
with the root at the bottom. To preserve the cyclical order of edges, the scope of
abstractions would always be positioned to the left of an abstraction node, and the left

18

6. IMPLEMENTATION

Figure 11: How the map for the term�x:�y:�z:x (y z) evolved over time. Maps 1
and 2 are incorrect due to too many crossings, Map 3 is correct but not aesthetically
pleasing, Map 4 is the �nal (correct) version.

19

6. IMPLEMENTATION

Figure 12: How the map for the term�x:�y:x (�a:�b:b a) y evolved over time. Map 1 is
incorrect due to a lack of crossings, Map 2 is incorrect due to too many crossings, Map
3 is not only incorrect due to too many crossings but is also very hard to decipher,
Map 4 is the �nal (correct) version.

20

6. IMPLEMENTATION

and right hand sides of application would be placed to the left and right respectively.
To ensure that variable edges would also preserve this ordering, an extra `support
node' was added to pull LHS variable edges up in the right direction, away from the
RHS edges. The variable edges were changed to use bezier curves, with the intention
that these edges would curve around the side of the map and only cross other variable
edges when they were supposed to. Unfortunately, the edges still tended to incorrectly
cross over other edges due to an insu�ciently large curvature. Variables used earlier
in the term would not be high up enough on the page to curve around the remainder of
the term (seen in Figure 11.2) This most commonly happened with terms containing
multiple larger subterms, as variables used earlier in the term would cross over edges
leading to the subterms (seen in Figure 12.2 { the only incorrect crossing is created
with the edge leading to the�a:�b:b a subterm).

After looking into how the bezier curves were drawn, the algorithm was modi�ed
slightly for the next version (3). The variable support nodes were placed at the top of
the page, with variables used earlier in the term having higher placed support nodes.
This was so that the curves would, in theory, avoid the edges created by the rest of the
term and only create correct crossings when approaching the abstraction nodes. The
support nodes were also given a more subtle style so as not to be confused with the
actual nodes of the map. The algorithm appeared to be successful in initial testing
(in Figure 11.3), even if it produced slightly ugly maps (e.g. the `spikes' created
by the meeting of the curved edges with the straight ones). However testing with
more complex terms (such as in Figure 12.3) revealed huge
aws in the algorithm
when dealing with closed subterms. The naive way that earlier variables were placed
higher up the page meant that the variables used in the closed subterm were dragged
downwards and caused edges to display messily and causing even more incorrect
crossings. An oddity in how the curvature of variables edges were rendered can also
be seen in Figure 12.3 { the edge representingx has an unnecessarily huge curve,
suggesting that the method for calculating the curvature of edges was slightly bugged
too.

Since these algorithms were not having much success and the code was growing
out of control, it was abandoned and started from scratch (4). Rather than diving
straight into creating a new algorithm, I spent some time thinking about a strategy for
drawing maps that would work for all terms. Nodes would be drawn in a similar way
to before, with the scope of an abstraction heading left of an abstraction node, and
the left and right hand side of an application heading out of the appropriate side. This
time, however, all of the variable support nodes would be placed at the same height
at the very top of the map. Support nodes were also added for abstraction nodes at
the same height. This meant that any crossings would only occur at the top of the
page, rather than the edges intersecting other parts of the map. The curvature radius
was calculated dynamically, based on the distance between the abstraction support
node and the variable support node { the further apart they were, the greater the
radius. This can be seen in Figure 11.4 { thex edge has the largest radius since it

21

6. IMPLEMENTATION

has the furthest to travel. This ensures that all three variable edges do not cross and
results in a correct planar map.

Special care was also taken for positioning of subterms. All nodes inside a subterm
would be shifted left or right so that they did not intersect with other parts of the
map. This is shown in Figure 12.4 { the subterm�a:�b:b a has been shifted so it is
entirely right of its parent application node, and this application node has also been
shifted to the right so that there is enough free space to hold the subterm.

While developing the map-generating algorithm, a recurring problem was labelling
edges and nodes correctly. In the API, each element must have a uniqueid , which
is used when giving edges a source and target. These ids were added to a� -context
when an abstraction node was encountered so they could be looked up when variables
were used later in the term. This caused problems when variable names were used
multiple times in a term (such as in
 = (�x:x x)(�x:x x)), since uses of the second
x would draw edges to the �rst x. Originally, terms were � -converted during the
algorithm (e.g.
 7! (�x:x x)(�x 0:x0x0)), to ensure all variable names were unique.
However this meant that the labels on the generated map would not match up with the
term speci�ed by the user, potentially making it confusing. Instead, alabel �eld was
created in map elements to store the original variable name in. This meant that theid
of each element could still be unique while retaining the original label. Subsequently,
when a variable was looked up in the context both theid of the abstraction node (for
the source of the variable edge) and the label (for labelling the variable edge) would
be returned.

Another problem lay in how to deal with free variables. Normally when encounter-
ing a variable, it was easy to determine the appropriate abstraction node by pre�xing
the variable label with a � . For free variables, this did not work at �rst because this
abstraction node did not exist. This meant it had to be created during the algo-
rithm, resulting in a clumsy if statement checking for the existence of such a variable
and creating a node for it if it did not exist. This caused all sorts of bugs, such
as with labelling as discussed in the previous paragraph. It turned out there was a
much simpler solution to this problem { create all the free variable nodes at the very
beginning of the algorithm, so they could be treated as ordinary abstraction nodes.
Initially these free variables were placed at the top of the page with the rest of the
variable edges, but this caused problems when manipulating the maps later as the
free and bound abstractions had di�erent named edges. Free variables were changed
to use the same basic structure as regular abstractions to ensure consistency for this
reason. This provided an important lesson to ensure consistency as much as possible
throughout the project { meaning that adding new features later could be done with
one block of code rather than have to adjust it for di�erent aspects.

Although representing linear terms was the main goal of creating the visualiser,
it turned out that pure terms could also be represented using the same algorithm
without needing to make any changes. Because variables and abstractions are consid-
ered separately, no problems are caused if variables are used multiple times: multiple

22

6. IMPLEMENTATION

Figure 13: An example of how the map-generating algorithm also works with pure
terms, with the term �x:�y:x x in which x is used multiple times andy is not used
at all.

edges can connect to one appropriate support node at the top; or not at all: an edge
leaves the abstraction node but terminates at the top of the map. This can be seen
in Figure 13.

6.5 Counting and generation functions

The next stage of the project was to develop functions to count and generate� -
terms of various fragments of the� -calculus. These could then be combined with the
visualiser to create� -term galleries.

The number of � -terms with a given number of subtermsn and free variablesk
can be de�ned as:

count(n; k) = count(n � 1; k + 1)

+
n� 2X

n1=1

count(n1; k) � count(n � 1 � n1; k)

+ [n = 1] k

where [n = 1] k is equal tok if n = 1, 0 otherwise.
The three terms in the sum correspond to abstractions, applications and variables

respectively. The number of abstractions can be calculated by counting all terms
with one less subterm (the abstraction itself counts for one subterm) and one extra
free variable (the abstracted variable). The number of applications is slightly more
complicated: we need to account for every possible way of splitting the subterms
between the two termst1 and t2. The number of variables is equal to the number of

23

6. IMPLEMENTATION

data Term = Abs Term | App Term Term | Var Int

gen :: Int -> Int -> [Term]
gen 0 _ = []
gen 1 k = [Var x | x <- [1..k]]
gen n k = [Abs t | t <- gen (n-1) (k+1)]

++ [App t1 t2 |
n1 <- [1..n-2], t1 <- gen n1 k,

t2 <- gen (n-1-n1) k]

Figure 14: A program to generate pure� -terms of a given number of subterms and
free variables.

free variables, but only if the number of subterms is equal to 1 { variables can only
have one subterm, themselves.

It is quite simple to develop this equation into a program to generate� -terms.
An example in Haskell is shown in Figure 14. With some modi�cations to how
we use free variables, we can also create programs to generate planar and linear
terms. For planar terms, the context of free variables will be split between the LHS
and the RHS of an application, so the algorithm will have to take into account the
various points at which it can be split (e.g. for � = [0,1,2] , the possibilities are
([],[0,1,2]) , ([0],[1,2]) , ([0,1],[2]) and ([0,1,2],[])). Linear terms are
slightly more complex, since the order of the context is not necessarily preserved by
the two terms of an application. All the di�erent ways the variables can be split
between the LHS and RHS must be considered.

To test that these algorithms were in fact correct, I compared the outputs from
the counting algorithms to known sequences on the Online Encycopedia of Integer Se-
quences (OEIS). For example, the sequence of numbers of closed linear� -terms of size
n (generated by[count n 0 | n <- [1..]] forms the sequence[0,1,0,0,5,0,0,
60,0,0,1105,...] which corresponds to sequence A062980 on the OEIS (Zeilberger,
2016).

Translating these programs fromHaskell to Javascript so they could be used
by the tools was fairly simple { pattern matching was replaced by switch statements
and list comprehensions by for loops.

6.6 The gallery

With the term generation functions implemented inJavascript , the next step was
to create `galleries' to display various sets of terms in. The �rst thing to consider was
the di�erent parameters that could be used to �lter terms to create di�erent galleries.
The original parametersn and k used in the generating algorithms could be used as

24

6. IMPLEMENTATION

a starting point, but there were others too such as number of crossings or number of
� -redexes. There may be ways to modify the generation algorithms to only return
these terms, but to start with all terms for a givenn and k were generated, then
the appropriate terms selected from the array. This has the downside of being quite
ine�cient when it comes to larger arrays of terms but meant that more time could be
spent on implementing the tools rather than attempting to devise more algorithms.

Combining the visualiser with the generation algorithms was fairly easy. After
receiving user input for values ofn and k, the appropriate generation algorithm
(pure, linear or planar) would be run to produce an array of� -terms. These terms
could then be fed to the visualiser to produce maps of each of these terms, which
would be displayed on screen using basic CSS to arrange them in a grid. Over time
the way the gallery was displayed was tinkered with to ensure the best display for
all displays and galleries (e.g. terms not too close together, spaced evenly etc.). The
ability to select �ltering criteria was also added later on { all this required was to
use the built-in filter(x -> ...) function to remove any terms that did not �t the
chosen criteria. Another modi�cation made to save time when generating galleries of
closed terms was to infer an emptyk box as a 0 { this saves lots of time when working
with closed terms.

A minor problem was found when passing the generated terms to the visualiser.
The generated terms did not contain any labels so the visualiser treated every variable
as a free variable and did not connect the edges to the correct abstraction nodes. This
was solved by giving abstracted variables unique dummy labels so the visualiser could
distinguish between di�erent abstractions.

Originally the captions for the portraits were displayed in de Bruijn notation, to
represent the `structure' of the generated terms rather than associate them with any
particular labels. However, this made the captions harder to understand than regular
notation. This was �xed by using the labelling function detailed in Section 6.2 to
generate a `canonical' labelling to display alongside the maps. An option to toggle
between de Bruijn and regular notation was added, as shown in Figure 15.

As the galleries were tested more it became apparent that for larger galleries, it
was not feasible to display all the maps in a suitable time. Since the actual map-
drawing process was the most computationally expensive, an option was added to
turn o� the map drawing and just show the captions for each term. This meant that
a user would still be able to generate the terms, and inspect them in more detail by
viewing their `portrait', as discussed in the next section.

6.7 � -term `portraits'

While the galleries were interesting alone to compare the similarities and di�erences
between terms with the same properties, it was hard to inspect the terms in detail
from the small portraits. To remedy this, functionality was added so that users could
click on a portrait and be shown a larger version, similar to the �rst visualiser tool.

25

6. IMPLEMENTATION

Figure 15: The gallery showing all closed linear terms with 5 subterms, with captions
in de Bruijn (top) and their regular `canonical' (bottom) notation.

As in an actual art gallery, I thought it would be interesting to have some of the
term's properties displayed next to the large portrait. One of the most interesting
topological properties of the maps is crossings, so an algorithm to calculate the number
of crossings in a given� -term had to be implemented. The only edges that cause
crossings are those that represent the use of abstracted variables. For a map to have
no crossings, its variables must be used in the order they are abstracted, i.e. their
de Bruijn indices, when read from left to right, must be in descending order. So to
�nd the crossings created by a particular variable, we can calculatecrossings(x) =
jx � (n � 1 � i)j, wherex is the de Bruijn index of the variable,n is the length of the
context, and i is the position of the variable in the context. For example, in a list of
free variables[0,1,2] , the 0 creates two crossings as it must pass through the edges
for variables1 and 2. Unfortunately, we cannot just perform this calculation for each
variable and add them together to �nd the total number of crossings since this would
contain duplicate crossings.

To solve this problem, a slightly di�erent approach was used. This approach was
based on the idea that a crossing is created when a free variable on the LHS of an
application has a lower de Bruijn index than a variable on the RHS. For example,
0 (1 2) has two crossings because 0 is less than both variables in the RHS, whereas
2 (1 0) has no crossings since 2 is greater than both variables in the RHS. These
crossings could then be added to the crossings in the LHS and RHS by recursively
applying the algorithm. A pseudocode implementation of the calculation of crossings
in an application can be seen in Figure 16. It is trivial to consider the other two cases:
variables have no crossings and abstractions have the same number of crossings as
their scope.

There was initially some trouble translating this into Javascript as I made a
severe lapse of judgement and tried to incorporate calculating the free variables into
the crossings function. SinceJavascript does not contain tuples, this meant per-

26

6. IMPLEMENTATION

1 freeLHS freeVariables(LHS) ;
2 freeRHS freeVariables(RHS) ;
3 totalCrossings crossings(LHS) + crossings(RHS) ;
4 for i 0 to length(freeLHS) do
5 for j 0 to length(freeRHS) do
6 if freeLHS[i] < freeRHS[j] then
7 totalCrossings totalCrossings+ 1 ;
8 end
9 end

10 end
11 return totalCrossings;

Figure 16: Algorithm to calculate crossings in an application.

forming various array manipulation options to keep track of the current number of
calculated crossings and free variables in the same array { this made the function
very hard to understand. I realised that to keep the code cleaner it would be better
to �rst implement a separate function to return an array of free variables in a� -term.
This made the crossings function much tidier and the implementation become very
close to the algorithm in Figure 16.

Other facts about the visualised term were much simpler to implement: calculating
the number of applications, abstractions and variables involved traversing the term
and incrementing a counter whenever a particular element appeared.

With the � -term portraits in good condition, I decided to add them to the visu-
aliser as well, to create more consistency between the two tools. This also enabled
code to be shared between the tools and caused the overall size of the codebase to
decrease, making it easier to maintain.

6.8 Interacting with � -redexes

With the core functionality of the visualiser and the gallery complete, it was time to
turn to more speci�c features. Since one of the main motivations of the project had
been to investigate normalisation,� -redexes were a good area to head into next.

I again turned to the ML functions developed by Pierce (2002). Firstly, a function
to `shift' all de Bruijn indices greater than a given number by a certain number of
places had to be implemented, followed by a function to substitute a variable for a
di�erent term. These could then be combined to create a� -reduction function. At
this point, I also made a basic normalisation function that continuously performed
an outermost reduction until reaching a normal form or performing a certain number
reduction steps. Combining this with the visualiser was again simple: the map draw-
ing function could be called after reducing or normalising the original term to draw

27

6. IMPLEMENTATION

Figure 17: An example showing how the redex highlighting originally had trouble
when dealing with redexes inside redexes, and how it now correctly displays.

the new term.
The next feature to implement was to list the� -redexes alongside the portraits.

This was just a case of traversing the term tree and adding each� -redex to an array as
it was encountered, meaning that the leftmost outermost redex would be in position
0 and the rightmost innermost redex would be in positionn, as shown below:

redex 0z }| {
(�x: (�y:y) x

| {z }
redex 1

) (�x: (�y:y) x
| {z }

redex 2

)

These redexes could then be printed next to the portraits. To implement clicking on
the redexes to reduce it, a function to perform a speci�c reduction in a term had to
be implemented. This was again a case of traversing the term in the same way with
a counter that ticked down until the appropriate redex was encountered.

To allow highlighting of redexes in the original term, a method to print terms with
HTML tags had to be implemented. This would print the term with tags sur-
rounding each beta redex, so each redex was associated with a class. For example, the
term (�x:x) a would be enclosed with... .
The style for this class could then be changed when highlighting its corresponding
redex in the list.

This became slightly more complicated when dealing with redexes within other
redexes { the function to change the style of a class had change the style of all classes
within the tags since the inner classes overwrote the outer ones. This is shown
in Figure 17.

A similar approach was used when making the redex highlight on the map. The
API used allows elements to have classes, so whenever a redex was encountered a
corresponding class would be added to an array, and added to all elements within the
redex. Whenever a redex was highlighted, the style function from the API could be
called and update all the elements with the appropriate class with the colour.

6.9 Normalisation graphs

One of the main ideas from the project proposal was the use of the visualised maps
in normalisation graphs. The �rst step in this was to implement these normalisation

28

6. IMPLEMENTATION

graphs as a data structure inJavascript , and then using these structures alongside
the graph drawing API to generate the graphs.

Originally normalisation graphs were created as a naive tree structure. The root
node contained the original term, with children representing all possible reductions
of that term (each edge representing an individual redex). While this seemed like a
suitable idea in theory, it was
awed in that not all redexes lead to unique reductions
(e.g. the two redexes in (�x: (�y: (�z:z) y) x) lead to � -equivalent terms), but the
tree structure could not represent two edges leading to the same node. This also
meant that the normalisation graph would not converge to the normal form at the
bottom, but would diverge to many nodes containing the same normal form. This
implementation would also fail to detect normalisation loops and would continue to
descend the tree in�nitely. However it had the bene�t of being simple to implement
and understand.

Regardless of its problems, this implementation was used for the �rst iteration
of generating normalisation graphs. Since the graph API had the ability to create
`compound nodes' (nodes with other graph elements inside them), the �rst strategy
was to traverse the normalisation tree, generating maps of the terms at each node and
placing them inside the larger node of the normalisation graph. The ids of elements
in these maps would have to be renamed so that maps from di�erent nodes did not
link up by mistake, but this was just a case of su�xing a unique id after each map's
elements. These normalisation graph nodes would then be connected by the edges
representing redexes. To place the nodes, each reduction was given a `level' value
which speci�ed how many steps had been taken to reach it from the original term.
Nodes with the same level were spread out evenly in a row, with rows starting from
the top of the page and moving down. This works �ne for linear terms, since steps
always take you further down the normalisation graph due to all paths being the same
length (it is impossible to get to another reduction on the same level). However for
pure terms this can cause some irregularities since consecutive reductions can occupy
the same level. Since edges are drawn in straight lines, this means they can cut across
other nodes in the graph, as shown in Figure 18. Fortunately this does not happen
too frequently, and the nodes can be moved out of the way of the edge if desired.

The �rst attempt at drawing normalisation graphs had numerous problems. While
the API did not redraw nodes with duplicate ids (which I thought might remove the
problem of the duplicate reductions in the normalisation tree), there was a problem
with edges { each node of the tree would attempt to draw its own set of edges,
causing many duplicates. This was �xed by checking for unique reductions in the
graph drawing algorithm, but this was unwieldy and made the algorithm quite hard
to understand. Compound nodes also caused the performance of the map to drop
drastically { moving nodes around was especially laggy. This was not helped by each
duplicate node drawing its own map, which I initially did not realise was happening
since the maps were drawn on top of each other. Finally there were no options to give
a margin around the maps in the normalisation graph nodes, so some of the edges

29

6. IMPLEMENTATION

Figure 18: An example of when the generated normalisation graph can feature edges
than cross behind other nodes for pure terms (the edge from the right node to the
left node crosses behind the centre node). However it is a lot harder than expected
to �nd examples like this.

Figure 19: A comparison between the compound node (left) and background image
(right) versions of normalisation graph nodes.

would intersect with the edge of their parent node, as shown in the left of Figure 19.
In an attempt to reduce the lag created by the drawn graph, I switched to using

images for the normalisation graph nodes. The map of the reduction would be gen-
erated �rst, then converted to an image using the API functions. This image could
then be used as the background of the normalisation graph node, as shown in the
right of Figure 19. This made creating tidier nodes much easier as a margin could
be speci�ed around the image so everything �t inside. Options were also added to
disable map generation for large terms (like with the gallery) to reduce the generation
time of the graph. It also turned out that drawing arrows on the edges was a large
cause of lag, so an option to not draw these was added.

While the tree implementation of normalisation graphs had just about been hold-
ing up through all of this tweaking, it started to show severe weaknesses when at-
tempting to implement functions to calculate path length. Because of the numerous
duplicate nodes, complex methods needed to be implemented to ensure that only
unique paths were being calculated. This was quite complicated and bloated the
functions signi�cantly. I decided that it was time to migrate to a more sophisticated

30

6. IMPLEMENTATION

implementation.
Rather than a tree, the new implementation uses an adjacency matrix that keeps

track of which nodes connect to each other, and by which redex. The original term
is fed to the initialisation algorithm, which then performs all the redexes in the
term and adds the resulting reductions to a frontier. The current node is added
to the adjacency matrix, with references to the nodes it connects to. This process
is continued, with any previously seen reductions not being re-added to the frontier,
until the frontier is empty and the graph is complete. This has several bene�ts over the
tree implementation. Most notably, every node is unique, which also means that there
are no duplicate edges that need to be removed when creating the map. Additionally,
because redexes are implemented as references to already existing objects rather than
new child objects, in�nitely reducing terms with �nite normalisation graphs (such as
(�x:x x)(�x:x x)) can have these graphs displayed. The only time the algorithm could
carry on in�nitely would be if the term reduces in�nitely with an in�nite normalisation
graph, such as for (�x:x x x)(�x:x x x). For these terms, a cuto� point was added to
halt the algorithm at a suitable number of reductions. In the code, the algorithm
becomes much more elegant (both while generating the graph and drawing it), since
recursion into the tree is replaced with a loop across the adjacency matrix. The value
for `level' was calculated in a similar way to before, with all reductions from the
original term assigned level 1, and each subsequent redex increasing this value by 1.

Path functions were now easier to implement. The total number of paths and
list of di�erent path lengths could be calculated by starting at the original term and
following the references in the adjacency matrix until the normal form was reached.
Properties such as shortest or longest path could then be computed by performing op-
erations on the list of path lengths, such asmin() or max(). For larger normalisation
graphs it turned out that it took a very long time to generate all the di�erent path
lengths across thousands of edges, so these functions were made an optional extra to
view rather than being generated for all graphs by default.

A feature added slightly later on was the ability to hover over edges and see the
redex that that it represented. The API provided functions for performing actions
on mouse events, so this was easy to implement. The only minor problem was that
redexes could free variables that were bound in the original term, so when it came
to printing them there was no way of knowing which variable they referred to. For
example, � (� 0) 0 prints as �x: (�y:y) x but the redex (� 0) 0 on its own prints as
(�y:y) ?, since thex is never bound. This was solved by storing the correctly printed
version of the redex at graph initialisation (by considering the original term) rather
than trying to generate the label at run-time.

6.10 Animating normalisation

The last major feature implemented was animating the normalisation of terms. In
theory, this was simple: highlight the appropriate redex, then perform it and redraw

31

6. IMPLEMENTATION

the new term, then keep going until the normal form was reached. Unfortunately,
chaining these operations was slightly harder than anticipated sinceJavascript is
single-threaded and as such does not have a conventionalsleep() function like in
multi-threaded languages. Instead it has asetTimeout() function that is passed a
function and executes it after a given time. This meant that what was originally a sim-
ple while loop had to become a recursive function with several nestedsetTimeout()
functions for the process of highlighting and performing each redex, then calling the
animation function on the new term.

Three strategies were implemented: leftmost outermost, which performs the �rst
redex in the redex list, rightmost innermost, which performs the last redex in the
redex list, and random.

6.11 Finishing touches

With all main functionality completed, all that was left to do was to polish up the
interface. To make use of the tool easier, the page would automatically scroll down
to the appropriate section of the page once buttons were clicked, rather than making
users scroll down themselves. I also tried to make the tools display better on di�erent
displays by using relative rather than absolute values for element dimensions in the
CSS �le. This meant that the visualised map would �t to the screen size rather than
spilling over, as had been happening on smaller screens.

One thing I noticed was how large maps and graphs were quite hard to view, so I
implemented a `full screen' mode to redraw them to �ll the screen. This was a simple
case of changing the dimensions of the element the map was drawn in to �ll the entire
screen, then redrawing the map inside it. Unfortunately this can cause delays for
large terms since the entire map generating algorithm has to be run again, but since
this was being done at the end of the project there was not enough time to look into
making an algorithm to re-position all the elements one by one.

32

7. FEATURES AND EXAMPLES

7 Features and Examples

This section details the features that are implemented in the �nal version of the tools,
and examples of ways they could be used.

7.1 Drawing � -terms

The core feature of the tools is the ability to represent any� -term from user input as
a rooted map on the screen. As can be seen in Figure 20, the visualiser is not limited
to linear terms { maps for any pure� -term can be generated.

A context of free variables can also be speci�ed, allowing these variables to be
used in the visualised term. Terms using the free variablesa and b can be seen at
the bottom of Figure 20, showing how the free variables are placed to the right of the
map. The user can pan and zoom around the map to inspect it more closely. Nodes
can also be dragged around to new positions. The user can also choose to display the
visualisation with or without labels (if just the structure is of interest). `Full screen'
mode is available so the visualised terms can �ll the screen.

To make it easier to input large expressions, users can associate them withaliases
(e.g. id = �x:x) to reduce the amount of typing necessary. An example using the
Church encoding of pairs (Pair = �x:�y:�v: v x y and fst = �p: p (�x:�y: x)) is shown
in Figure 21. A large number of aliases can be pasted in at once with the `bulk alias'
function, which can be useful when using a large amount of prede�ned functions (such
as Mairson's encodings of boolean circuits, as shown in Section 7.3).

A number of properties are shown alongside the visualised term. Of most inter-
est are the number of crossings, which might be hard to count if there are many,
and number of� -redexes, which are not always obvious (and could be hidden inside
aliases).

7.2 Normalisation

The � -redexes in the term are listed next to the term when it is visualised, as shown in
Figure 22. By hovering over them, a user can see them highlighted in the visualisation
and within the term itself. Di�erent redexes are highlighted in di�erent colours to
distinguish between them clearly, as shown in Figure 23. By clicking a redex, it
will be performed and the visualisation updated with the newly reduced term. By
continuing to click on redexes the normal form (if it exists) can be eventually reached.
Alternatively, by clicking the `normalise' button the term will display its normal form
straight away if it exists. For example, the termfst (Pair x y) from Figure 21
normalises tox, as expected.

Rather than clicking on the redexes, the process can be animated. There are three
strategies provided: left-to-right outermost, right-to-left innermost, and random. The
visualiser will highlight the redex it is about to perform, then perform it. This process

33

	Abstract
	Acknowledgements
	Introduction
	Motivation
	lambda-term visualiser
	lambda-term gallery
	Report structure

	Background
	The lambda-calculus
	Definitions
	Beta-reduction
	Fragments of the lambda-calculus

	Graphs and maps

	Specification
	A graphical representation of lambda-terms
	Parsing terms from user input
	Visualising terms

	Generating lambda-terms from a given fragment
	Studying normalisation properties of fragments

	Implementation
	Language
	Implementing the lambda-calculus in Javascript
	Parsing terms from user input
	Drawing the terms
	Counting and generation functions
	The gallery
	Lambda-term `portraits'
	Interacting with beta-redexes
	Normalisation graphs
	Animating normalisation
	Finishing touches

	Features and Examples
	Drawing lambda-terms
	Normalisation
	Example: Boolean circuits
	Generating lambda-term galleries
	Example: Testing conjectures

	Testing
	Parsing terms from user input
	Visualising terms
	Generating lambda-terms from a given fragment
	Investigating normalisation properties of fragments

	Evaluation
	Achievements
	Performance issues
	Lag experienced with larger terms
	Delays in generating large galleries and graphs

	Comparison with other visualisation software
	Future development
	Polishing the layout
	Experimenting with APIs
	Smoothly animated reductions
	Better display of normalisation graphs
	Rehaul map-drawing algorithm
	Improve generation functions
	Combinatorial maps

	Project management
	Project structure
	Project log
	Supervisor meetings
	Version control

	Conclusion
	File structure
	root – Main files
	docs directory – Documentation
	src directory – Source code
	pics directory – Images
	tests directory - Unit tests

	Project log

