
A Fully Compositional Theory of Digital Circuits

George Kaye
University of Birmingham
21 June 2024
Applied Category Theory 2024 (ACT 2024)

What are we going to be talking about?

Digital circuits!

1

What are we going to be talking about?

Digital circuits!

R

S

Q

Q
2

What are we going to be talking about?

We want a compositional theory of digital circuits.

f g h

gf
f

g h

Using string diagrams removes
much of the bureacracy

(also they look pretty) 3

The story so far

How did we get here?

4

The story so far

2003
5

The story so far

Yves Lafont
‘Towards an algebraic theory of Boolean circuits’

6

The story so far

2016
7

The story so far

Dan Ghica, Achim Jung, Aliaume Lopez
‘Diagrammatic semantics for digital circuits’

8

The story so far

2019
9

The story so far

‘Do you know category theory’
‘Do you want to do circuits stuff’

‘No’
‘Okay’

David Sprunger

‘I will help too’

10

Hold on a second...

11

Hold on a second...

12

Put the pieces together

Syntax

13

Combinational circuit components

gates (co)monoid structure categorical structure

AND gate introduce identity

OR gate fork symmetry

NOT gate join

eliminate

Light circuits f only contain gates and structure.

(actually, we do it more generally than this, but let’s keep it simple)
14

Sequential circuit components

Values

f false

t true

⊤ short circuit

⊤

f

⊥

t

Delay Feedback

f ⇒ f

Dark circuits f may contain

delay or feedback.

15

Building circuits

Circuits are morphisms in a freely generated
symmetric traced monoidal category (STMC).

gf
f

g f

16

Breaking the mould

Why not use Frobenius structure?

f

We want copying...

f =
f

f
=

f = f
17

Where were we?

18

What is the meaning?

What are the denotational semantics of digital circuits?

Certain kinds of stream functions!

f (v0 :: v1 :: v2 :: . . .) = w0 :: w1 :: w2 :: . . .

Denotational equivalence

J f K = J g K ⇒ f ≈ g

19

Guards, guards!

We can also eliminate non-delay-guarded feedback

f ≈
f f f

(Kleene fixpoint theorem)

20

We want something different

Denotational equivalence obscures the structure of terms

We want to reason more syntactically

Operational semantics
a bit has changed

Algebraic semantics
(pretty much) new

21

Doing something useful

Suppose we have two circuits
with the same denotation

s
f

{
=

s
g

{

What does this tell us about the
structure of these circuits?

22

Reducing it down

We want to find a set of
reductions for digital circuits

We want to reduce circuits to their outputs
syntactically in a step-by-step manner

23

Going global

f = v f̂

by moving boxes and wires around

24

Going global

v
:= v ‘Register’

v f ⇝
f̂

⊥v

f
∗
⇝

f̂
s ∗

⇝
f̃s

25

What is the goal

We want to compute the outputs of circuits given some inputs

fv ∗
⇝ g w

How does a circuit process a value?

26

Reducing values

v g ⇝ JgK(v) v ⇝
v

v

v

w
⇝ v ⊔ w v ⇝

Lemma

For every f there exists w s.t. fv
∗
⇝ w .

27

Catching the jet stream

What about delays?

fv := f
v

⇝
fv

f
’Streaming’

28

Catching the jet stream

fv ⇝
f̂s

v
⇝

f̂

f̂s
v

⇝

f̂

t
w ⇝

f̂ t
w

⇝
f̂t

w
:= g w

29

Observe this

When are two circuits observationally equivalent?

Circuits have finitely many states...

fs ft fu · · ·

Maximum number of states: |V|number of delays

30

Observe this

f ∼ g

Two circuits are observationally equivalent if the reduction
procedure creates the same outputs for all inputs of length

|V|max number of delays + 1.

31

Observe this

f ≈ g ⇔ f ∼ g

Denotational semantics ∼= Operational semantics

32

A little bit different

This operational semantics is a bit different to some others...
(cf. signal flow graphs)

t ▷
k−−→
k k

t+ 1 ▷ v ⇝
v

v

We want to transform the circuit

33

Still takes a while

This is a superexponential upper bound for
testing circuit equivalence

Can we do better?

34

Mealy is so back

First things first...

= = =

f =
f f f

By these equations, f = f̂s
35

It’s completely normal

Say we have a procedure ||−|| for establishing a
canonical circuit for a function f : Vm → Vn

f0

f1
t

f

A circuit is normalised if it is in the image of ||−||
36

It’s completely normal

=

= =

= =

= = = =

= = =

= = = =

37

It’s completely normal

= = =

= = =

= = =

= = =

= = =

38

Changing the states

How to translate between ||f ||s and ||g||t ?

First encode one set of states into the other

|encm|s = t |decm|t = s

(and for any future states)

39

Changing the states

||f ||s
x

= ||f ||s
x

||encm|| ||decm||

v g = JgK(v) v =
v

v

v

w
= v ⊔ w

v = = = pv =
pv

p

= = = =

40

Changing the states

With these equations we can derive

||f ||s = ||f ||encm(s) ||encm||||decm||

41

Think about what matters

Is this enough?

f

t

f

t

The cores may not have the same semantics!

42

Think about what matters

||f ||s = ||g||s

where f and g ‘agree on the states that matter’

43

It is complete

f ≈ g ⇔ f = g

Denotational semantics ∼= Algebraic semantics

44

To the end

Three different semantics for sequential digital circuits

Denotational

Operational Algebraic

∼=

∼=

∼=

45

	Syntax
	Previous work
	Operational semantics
	Algebraic semantics

