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What are we going to be talking about?

Digital circuits!
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What are we going to be talking about?

Digital circuits!
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What are we going to be talking about?

We want a compositional theory of digital circuits.
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Why all the pictures?

We want to reason equationally about circuits.

Using string diagrams removes much of the
bureacracy
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What came before

Lafont (2003) ‘Towards an algebraic theory of Boolean circuits’

Ghica, Jung, Lopez (2017) ‘Diagrammatic semantics for digital circuits’
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Joint work with...

Dan Ghica
University of Birmingham

David Sprunger
Indiana State University
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Syntax



Combinational circuit components

gates

AND gate

OR gate

NOT gate

(co)monoid structure

disconnected

fork

join

stub

categorical structure

identity

symmetry

Light circuits F only contain gates and structure.
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Sequential circuit components

Values

f false

t true

b short circuit

Delay
Feedback

F ⇒ F

Dark circuits F may contain delay or feedback.
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Building circuits

Circuits are morphisms in a freely generated
symmetric traced monoidal category (STMC).
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Need an example?
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Semantics



We need some meaning

Values are interpreted in a lattice:

⊤

1

⊥

0

7→ ⊥

f 7→ 0

t 7→ 1

b 7→ ⊤
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Let’s make everything a function

g monotone functions g : Vm → V

initialise () 7→ (⊥)

copy x 7→ (x, x)

join in the lattice (x, y) 7→ x ⊔ y

discard x 7→ ()

Feedback is interpreted as the least fixed point.
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Functions are not enough

How do we model delay?

Streams!
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Streams

A stream Vω is an infinite sequence of values.

v0 :: v1 :: v2 :: v3 :: v4 :: v5 :: v6 :: v7 :: · · ·

A stream function Vω → Vω consumes and produces streams.

f (v0 :: v1 :: v2 :: v3 :: v4 :: · · · ) = w0 :: w1 :: w2 :: w3 :: w4 :: · · ·
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Interpreting the sequential components

v () := v ::⊥ ::⊥ ::⊥ :: · · ·

(v0 :: v1 :: v2 :: · · · ) := ⊥ :: v0 :: v1 :: v2 :: · · ·
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Maybe there are too many streams

Does every circuit correspond to a stream function
(Vm)ω → (Vn)ω?

No.
(but this is to be expected!)
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Restricting the stream functions

Circuits are causal.
They can only depend what they’ve seen so far.

Circuits are monotone.
They are constructed from monotone functions.

Is that all? Not quite... (but we’ll get there)
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Some operations on stream functions

Given a causal stream function f : (Vm)ω → (Vn)ω and an element a ∈ Vm...

initial output f [a] ∈ Vn

‘the first thing f produces given a’

stream derivative fa ∈ (Vm)ω → (Vn)ω

‘how f behaves after seeing a first’

Hold on, these look familiar...
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An old friend

Mealy machines!
Stream functions are the states in a Mealy machine.
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Circuits have finitely many behaviours

Circuits have a finite number of components.

So there are finite number of states in the Mealy machine.

So the outputs of streams given some input must be periodic.

(There are finitely many stream derivatives).
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These are the streams we’re looking for

Theorem
A stream function is the interpretation of a sequential circuit if and only if it is
causal, monotone and has finitely many stream derivatives.
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The correspondence

Circuits

Stream functions Mealy machines

22



Operational semantics



Doing something useful

Equational reasoning Unstructured pen and paper proofs

Operational semantics Mechanical step-by-step reduction
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Going global

F = v F̂

by moving boxes and wires around
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Going global

Some notation:
v

:= v ‘Register’

By adding equations = = and =

v F̂ = F̃
s

What are we going to do with the non-delay-guarded trace?
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Do we even need it?

In industry, normally circuits must be delay-guarded.

But this rules out some clever circuits!

G

F
⇒ G F

(And also it would be cheating)
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Getting rid of non-delay-guarded feedback

V is a finite lattice...

The functions are monotone...

We can compute the least fixed point in finite iterations!

F0 := F Fk+1 :=
F

Fk

Axiom(s)

F
x

= F2x+1
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Getting rid of non-delay-guarded feedback

t = t =
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Here’s Mealy

For any circuit

F = F̃s
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What is the goal

We want to compute the outputs of circuits given some inputs

Fv ⇝⋆ G w

How does a circuit process a value?
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Reducing values

v g = JgK (v) v =
v
v

v
w

= v ⊔ w v =

Lemma

For every F there exists w s.t. Fv = w .
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Catching the jet stream

What about delays?

Fv = F
v

=
Fv
F

’Streaming’
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Catching the jet stream

Fv = F̂s
v

=

F̂

F̂s
v

=

F̂

t
w =

F̂ t
w

=

F̂t
w

= G w
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From diagrams to graphs



Making it combinatorial

F̂s ⇒

It is hard for computers to work with string diagrams...

...but computers love graphs!
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A hyper kind of graph

ϕ ψ
0

1

2

0

1

3 3
2

There are correspondences between certain classes of
hypergraphs and circuit string diagrams.

ϕ ψ
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Using the correspondence

Circuit string diagram Hypergraph representation

New circuit string diagram Rewritten hypergraph

Graph rewrite
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Implementing it all

The rewriting framework has been implemented in a
hardware description language.

(the language is still in development)
(so I’ve been warned not to accidentally announce anything)
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I can still show you something

Create a circuit...

accumulator

1 Cin:1
A:4
B:4

ripple_adder
S:4

Cout:1
4

4 4 0 :: 4

S:4

1

40^ω 1

A:4

38



I can still show you something

The evaluator converts it into Mealy form...

accumulator

4 4
4

∇_4 4

4

1
1
1

∇_1 1

1

4 4
4

∇_4 4

4

1 1
1

∇_1 1

1

4

4
1
4
1
4

MealyCore(accumulator)

4
1
4
1
4

1

4

1

4

4 4 delay_4 4

1

1 delay_1 1

4

4 delay_4 4

1

1 delay_1 1

4 S:4

0 1

0 4

⊥⊥⊥⊥ 4

⊥ 1

A:4
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I can still show you something

...and then evaluates an input.

accumulator

4

4
4

∇_4 4

4 4 delay_4 4

4

4

4
4

∇_4 4

1

1
1

∇_1 1
1

4 4
4

∇_4 4

4

1 1
1

∇_1 1

1

4

4
1
4
1
4

MealyCore(accumulator)

4
1
4
1
4

1

4

1

4

4 4 delay_4 4

1

1 delay_1 1

4

4 delay_4 4

1

1 delay_1 1

4 S:4

4

0 1

⊥⊥⊥⊥ 4

⊥ 1

1 4

1 4

A:4
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Conclusion

We have developed a compositional framework for digital circuits

We have an operational semantics for digital circuits

We can model this using graph rewrites on hypergraphs

This has been implemented in a hardware description language
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