A compositional theory of digital circuits

George Kaye

University of Birmingham 05 April 2023

Digital circuits!

(but these are a little different to the ones Dan and Jamie are using)

This lets us build combinational circuits.

These circuits are boring!

E- 5-

E- S- b-

E- 5- 6- ->-

##
These circuits are boring! Circuits need state...

...and feedback!

These circuits are boring! Circuits need state...

...and feedback!

Now what?

Now what?

None of this means anything!

Open the gates

AND = VANT

10

₽-< = ₽ **→** _ _

Time to join up

We must not delay

This gives us some nice structure

From axioms we derive theorems

From axioms we derive theorems

From axioms we derive theorems

We want to process inputs to obtain outputs

We want to process inputs to obtain outputs

SE->-GS

This axiom is the last one

This axiom is the last one

This axiom is the last one

Arbitrary gate and value sets...

Arbitrary gate and value sets... Handling non-delay-guarded feedback...

Arbitrary gate and value sets...

Handling non-delay-guarded feedback...

Defining the denotational semantics of circuits as stream functions...
We're only scratching the surface!

Arbitrary gate and value sets...

Handling non-delay-guarded feedback...

Defining the denotational semantics of circuits as stream functions... Interpreting circuits as hypergraphs for reasoning computationally...

We're only scratching the surface!

Arbitrary gate and value sets...

Handling non-delay-guarded feedback...

Defining the denotational semantics of circuits as stream functions... Interpreting circuits as hypergraphs for reasoning computationally...

(someone could write this up as a PhD thesis)