
Diagrammatic Semantics for
Symmetric Traced Monoidal Categories

George Kaye
04 March 2021

University of Birmingham

Introduction

What’s the point?

1

Compositional processes

We can model compositional processes.

F

F · G

F

⊗

G

2

Compositional processes

t

f
AND

t⊗ f · AND

 f

f

3

Compositional processes

t

f

f

AND
OR

((t⊗ f · AND)⊗ f) · OR (f ⊗ f) · OR f

(t⊗ f ⊗ f) · (AND⊗ id1) · OR ?

4

Compositional processes

Tr1((σ1,1 · NOR · ≺)⊗ id1 · id1 ⊗ (NOR · ≺) · σ1,1 ⊗ id1)

5

Graphical languages for
monoidal categories

Categories

Generators

A B

f : A → B

f B C

g : B → C

g

Composition

A C

f · g : A → C

f g

6

Categories – identity morphisms

idA : A → A idB : B → B

idA · f : A → B

f
=

f : A → B

f
=

f · idB : A → B

f

7

Monoidal categories

f : A → B

f

g : C → D

g

f ⊗ g : A⊗ C → B⊗ D

f

g

8

Monoidal categories – monoidal unit

idI : I → I

idI ⊗ f : I⊗ A → I⊗ B

f

=
f : A → B

f =

f ⊗ idI : A⊗ I → B⊗ I

f

9

Monoidal categories – functoriality

(f ⊗ h) · (g⊗ k) : A⊗ D → C ⊗ F

f g

h k

(f · g)⊗ (h · k) : A⊗ D → C ⊗ F

f g

h k

We did it – bureaucracy is no more!

10

Symmetric monoidal categories

Symmetry

σA,B : A⊗ B → B⊗ A

11

Symmetric monoidal categories – axioms

Naturality

f

g
=

g

f

Hexagon

=

Self-inverse

=

12

PROPs

A PROP is a monoidal category where the objects are natural
numbers and tensor product is addition.

f : 2 → 1

f

13

Free categories

A signature is a set of generators.

{≺ : 1 → 2, � : 2 → 1}

We create terms by combining generators.

≺ ⊗ id1 · id1 ⊗ σ1,1· � ⊗ id1

≺ �

14

Bending the wires

All our wires have gone from left to right.

Can we bend them?

We can in a compact closed category.

15

Bending the wires

Compact closed categories have flexible causality.

≺

In some cases this is bad.

16

Symmetric traced monoidal categories

The trace is a single atomic action.

f : X ⊗M → X ⊗ N

f ⇒

TrX(F) : M → N

f

17

Symmetric traced monoidal categories – axioms

Tightening

TrX(idX ⊗ g · f · idX ⊗ h) = g · TrX(f) · h

g f
h

=
g f

h

Yanking

TrX(σX,X) = idX

=

18

Symmetric traced monoidal categories – axioms

Superposing

TrX(f ⊗ idA) = TrX(f)⊗ idA

f = f

Exchange

TrY(TrX(f)) = TrX(TrY(σY,X ⊗ idA · f · σX,Y ⊗ idA))

f
=

f

19

Free traced categories

Tr1(≺ ⊗id1 · id1 ⊗ σ1,1· � ⊗id1)

≺ �

From here on, we will fix an arbitrary traced PROP TermΣ,
generated freely over some signature Σ.

20

Adding extra structure

Graphical calculi ‘absorb’ the painful axioms of categories.

Does this solve all of our problems?

No.
We often work in categories with extra structure.

21

Adding extra structure

Naturality of Cartesian copy

f ∆ =

f ·∆n = ∆n · f ⊗ f

∆
f

f

We need to define our graphs a little more rigorously...

22

Combinatorial diagrams

String graphs
Hypergraphs

23

Hypergraphs

Hypergraphs

24

Labelled hypergraphs

Σ = {≺ : 1 → 2,� : 2 → 1}.

25

Hypergraph morphisms

Bijective maps⇒ isomorphism.

26

Hypergraphs are not enough

Splitting wires

not allowed!

Interfaces

how?

27

Interfaced linear hypergraphs

28

Labelled interfaced linear hypergraphs

Σ = {≺ : 1 → 2,� : 2 → 1}

29

Interfaced linear hypergraph morphisms

Bijective maps + preserves interface⇒ isomorphism ≡.

30

Soundness and completeness

Soundness

Equal terms
in the category

⇒ Isomorphic interpretations
as hypergraphs

31

Composition

≺ · � : 1 → 1

·

id1 : 1→ 1

32

Monoidal tensor

≺ ⊗ � : 1 + 2 → 2 + 1

⊗

id0 : 0 → 0

33

Symmetry

σ1,1 : 2 → 2

We can build up larger symmetries by composing symmetries
and identities.

34

The problem with trace

Trace of the identity

idA : A → A
TrA−−→

TrA(idA) : I → I

But...

not allowed!

35

Homeomorphism

≈ ≈

36

Trace

Trace is defined recursively over the number of wires.

Tr1(H)−−−→ ≈

Tr1(id1)−−−−→

37

Interpreting terms as graphs

We assemble our hypergraphs into a traced PROP HypTermΣ.

J−K : TermΣ → HypTermΣ

38

Interpreting terms as graphs

≺ � J−K−−→

39

Soundness

Theorem (Soundness)
For any morphism f ,g ∈ TermΣ, if f = g under the equational
theory of the category, then their interpretations as linear
hypergraphs are isomorphic.

40

Definability

An interfaced linear
hypergraph

⇒ A set of corresponding
terms in the category

41

Stacking

First we set an order ≤ on our edges and stack them.

≺ ⊗ �

≺

�

42

Tracing

Then we trace around all the outputs of the stack:

≺

�

Tr3(?· ≺ ⊗ �)

43

Shu�ing

We then connect everything up:

≺

�

Tr3(σ3,1 · σ3,1 · id1 ⊗ σ1,1 ⊗ id1· ≺ ⊗ � ⊗ id1)

(Exercise: follow around the wires, make sure this is correct)

44

Definability

〈〈−〉〉 : HypTermΣ → TermΣ

Proposition (Definability)
For every well-formed hypergraph F then J〈〈F〉〉K ≡ F.

45

Coherence

But we cannot conclude completeness yet!

An interfaced linear
hypergraph

⇒
Unique morphism in the

category, up to the
equational theory

46

Coherence

Fortunately, we just need to show it for swapping two edges.

shu�e≤1

x

f

g

y

= shu�e≤2

x

g

f

y

Proposition (Coherence)
For all orderings of edges ≤x on a hypergraph F,

〈〈F〉〉≤1
= 〈〈F〉〉≤2

= · · · = 〈〈F〉〉≤n

47

Completeness

Theorem (Completeness I)
For any interfaced linear hypergraph H, J〈〈H〉〉K ≡ H.

Theorem (Completeness II)
For any morphism f ∈ TermΣ, 〈〈Jf K〉〉 = f .

48

Graph rewriting

Rewrite rules

We express extra structure as additional axioms.

These axioms can be expressed as rewrite rules.

f ∆ =

f ·∆n = ∆n · f ⊗ f

∆
f

f

=

49

Rewrite rules

First let’s see how it works with normal hypergraphs.

For a set of axioms E ∈ TermΣ, we write JEK for their
conversion into spans like this.

50

DPO rewriting

51

DPO rewriting

First we identify a matching morphism.

−→

52

DPO rewriting

We also need an explicit morphism to denote the interfaces.

−→

53

DPO rewriting

54

DPO rewriting

We then compute the pushout complement.

55

DPO rewriting

Then we perform a pushout on C ← K → R.

We write G JEK H if rewriting can be performed in this way.

56

Adhesive categories

Not all structures are compatible with DPO rewriting.

The framework of adhesive categories is often used to ensure
that pushout complements are always unique, if they exist.

Proposition
The category of (vanilla) hypergraphs is adhesive.

57

Adhesive categories

Unfortunately, LHypΣ is not adhesive...

We’ll just do the rewriting in Hyp instead!

58

Trimming

d−e
==⇒

59

Reinterfacing

io(−)
===⇒

→ d−e
==⇒

60

Rewrite rule

=

↓

61

Rewriting

62

Rewriting

d−e d−e

63

Rewriting

d−e d−e

d−e

64

Rewriting

d−e d−e

d−e

io(−)

65

Rewriting

d−e d−e

d−e

io(−)

66

Rewriting

d−e d−e

d−e

io(−)

67

Rewriting

d−e d−e

d−e

io(−)

b−c

68

Generalisation

Can we generalise to arbitrary STMCs?

Just add vertex labels!

69

Conclusion

We have a sound and complete graphical language for STMCs.

We can reason in STMCs purely graphically.

We can add extra axioms using graph rewrites.

Just formulate the axioms as rewrite rules.

70

References i

F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and
F. Zanasi.
Rewriting modulo symmetric monoidal structure.
In 2016 31st Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–10. IEEE, 2016.

H. Ehrig, M. Pfender, and H. J. Schneider.
Graph-grammars: An algebraic approach.
In 14th Annual Symposium on Switching and Automata
Theory (swat 1973), pages 167–180. IEEE, 1973.

71

References ii

M. Hasegawa.
On traced monoidal closed categories.
Mathematical Structures in Computer Science,
19(2):217–244, 2009.

A. Kissinger.
Pictures of processes: Automated graph rewriting for
monoidal categories and applications to quantum
computing, 2012.

P. Selinger.
A survey of graphical languages for monoidal categories.
In New structures for physics, pages 289–355. Springer,
2010.

72

	Graphical languages for monoidal categories
	Hypergraphs
	Soundness and completeness
	Graph rewriting

