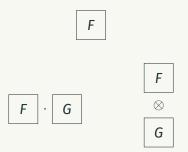
Diagrammatic Semantics for Symmetric Traced Monoidal Categories

George Kaye 04 March 2021

University of Birmingham

What's the point?

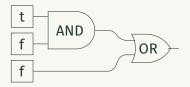
We can model compositional processes.



Compositional processes

 $t\otimes f\cdot AND$

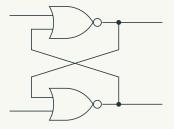
Compositional processes



 $((t\otimes f\cdot \mathsf{AND})\otimes f)\cdot \mathsf{OR} \quad \rightsquigarrow \quad (f\otimes f)\cdot \mathsf{OR} \quad \rightsquigarrow \quad f$

 $(t \otimes f \otimes f) \cdot (AND \otimes id_1) \cdot OR \quad \rightsquigarrow \quad ?$

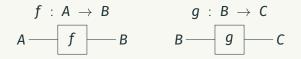
Compositional processes



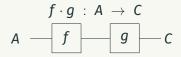
 $\operatorname{Tr}^{1}((\sigma_{1,1} \cdot \operatorname{NOR} \cdot \prec) \otimes \operatorname{id}_{1} \cdot \operatorname{id}_{1} \otimes (\operatorname{NOR} \cdot \prec) \cdot \sigma_{1,1} \otimes \operatorname{id}_{1})$

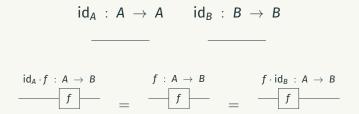
Graphical languages for monoidal categories

Generators

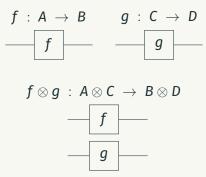


Composition





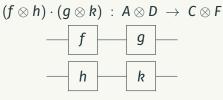
Monoidal categories

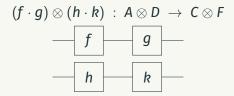


Monoidal categories - monoidal unit

$$\mathsf{id}_{\mathsf{I}} : \mathsf{I} \to \mathsf{I}$$

Monoidal categories – functoriality





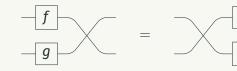
We did it - bureaucracy is no more!

Symmetry

$\sigma_{\mathsf{A},\mathsf{B}}$: $\mathsf{A}\otimes\mathsf{B}$ \rightarrow $\mathsf{B}\otimes\mathsf{A}$

Symmetric monoidal categories – axioms

Naturality

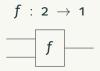


g

Hexagon

Self-inverse

A PROP is a monoidal category where the objects are natural numbers and tensor product is addition.



A signature is a set of generators.

$$\{\prec \ : \mathbf{1} \
ightarrow \mathbf{2}, \succ \ : \mathbf{2} \
ightarrow \mathbf{1}\}$$

We create terms by combining generators.

$$< \otimes \operatorname{id}_1 \cdot \operatorname{id}_1 \otimes \sigma_{1,1} \cdot \succ \otimes \operatorname{id}_1$$

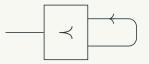
1

All our wires have gone from left to right.

Can we bend them?

We can in a compact closed category.

Compact closed categories have flexible causality.



In some cases this is bad.

The trace is a single atomic action.

Symmetric traced monoidal categories – axioms

Tightening

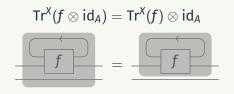
$$\operatorname{Tr}^{X}(\operatorname{id}_{X}\otimes g\cdot f\cdot \operatorname{id}_{X}\otimes h)=g\cdot \operatorname{Tr}^{X}(f)\cdot h$$

Yanking

$$\operatorname{Tr}^{X}(\sigma_{X,X}) = \operatorname{id}_{X}$$

Symmetric traced monoidal categories – axioms

Superposing



Exchange

 $\mathsf{Tr}^{\mathsf{Y}}(\mathsf{Tr}^{\mathsf{X}}(f)) = \mathsf{Tr}^{\mathsf{X}}(\mathsf{Tr}^{\mathsf{Y}}(\sigma_{\mathsf{Y},\mathsf{X}} \otimes \mathsf{id}_{\mathsf{A}} \cdot f \cdot \sigma_{\mathsf{X},\mathsf{Y}} \otimes \mathsf{id}_{\mathsf{A}}))$

$$\mathsf{Tr}^{1}(\prec \otimes \mathsf{id}_{1} \cdot \mathsf{id}_{1} \otimes \sigma_{1,1} \succ \otimes \mathsf{id}_{1})$$

From here on, we will fix an arbitrary traced PROP Term_{Σ}, generated freely over some signature Σ .

Graphical calculi 'absorb' the painful axioms of categories. Does this solve all of our problems?

No.

We often work in categories with extra structure.

Naturality of Cartesian copy

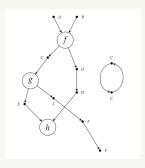
$$f \cdot \Delta_n = \Delta_n \cdot f \otimes f$$

$$-f - \Delta_n = -\Delta_n \cdot f \otimes f$$

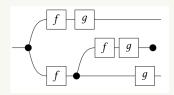
We need to define our graphs a little more rigorously...

Combinatorial diagrams

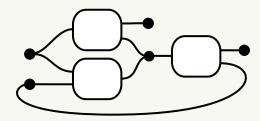
String graphs



Hypergraphs

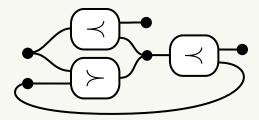


Hypergraphs

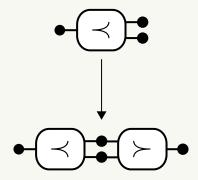


Labelled hypergraphs

$\Sigma = \{ \prec \ : \ 1 \ \rightarrow \ 2, \succ \ : \ 2 \ \rightarrow \ 1 \}.$

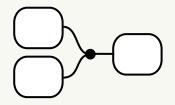


Hypergraph morphisms



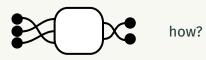
Bijective maps \Rightarrow isomorphism.

Splitting wires

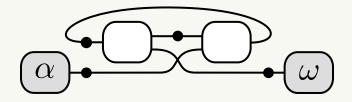


not allowed!

Interfaces

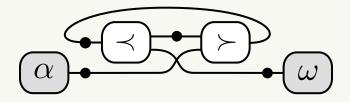


Interfaced linear hypergraphs

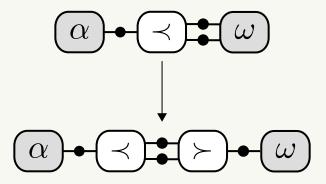


Labelled interfaced linear hypergraphs

$\Sigma = \{ \prec \ : \ \textbf{1} \ \rightarrow \ \textbf{2}, \succ \ : \ \textbf{2} \ \rightarrow \ \textbf{1} \}$



Interfaced linear hypergraph morphisms



Bijective maps + preserves interface \Rightarrow isomorphism \equiv .

Soundness and completeness

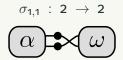
Composition

 $\prec \cdot \succ$: 1 \rightarrow 1 $(\omega) \cdot (\alpha)$ (ω) α ω α

 $id_1: 1 \rightarrow 1$ ω

 $\prec \otimes \succ \ : \ 1+2 \ \rightarrow \ 2+1$

 $\operatorname{id}_{o} : o \rightarrow o$ α ω



We can build up larger symmetries by composing symmetries and identities.

Trace of the identity

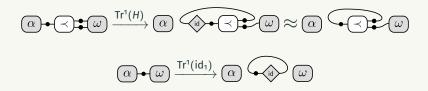
$$\begin{array}{cccc} \mathsf{id}_{\mathsf{A}} \, : \, \mathsf{A} \, \to \, \mathsf{A} & & & & \mathsf{Tr}^{\mathsf{A}}(\mathsf{id}_{\mathsf{A}}) \, : \, \mathsf{I} \, \to \, \mathsf{I} \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & &$$

But...

not allowed!

$(\alpha \bullet \omega) \approx (\alpha \bullet \mathsf{id} \bullet \omega) \approx (\alpha \bullet \omega)$

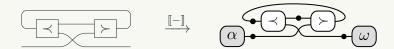
Trace is defined recursively over the number of wires.



We assemble our hypergraphs into a traced PROP HypTerm_{Σ}.

 $[\![-]\!] : \, \text{Term}_{\Sigma} \, \rightarrow \, \text{HypTerm}_{\Sigma}$

Interpreting terms as graphs



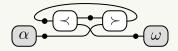
Theorem (Soundness)

For any morphism $f, g \in \text{Term}_{\Sigma}$, if f = g under the equational theory of the category, then their interpretations as linear hypergraphs are isomorphic.

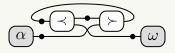
$\begin{array}{ll} \text{An interfaced linear} \\ \text{hypergraph} \end{array} \Rightarrow$

A set of corresponding terms in the category

First we set an order \leq on our edges and stack them.

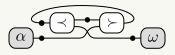


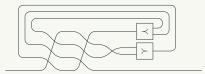
Then we trace around all the outputs of the stack:



 $Tr^3(? \cdot \prec \otimes \succ)$

We then connect everything up:





 $\mathsf{Tr}^3(\sigma_{3,1} \cdot \sigma_{3,1} \cdot \mathsf{id}_1 \otimes \sigma_{1,1} \otimes \mathsf{id}_1 \cdot \prec \otimes \succ \otimes \mathsf{id}_1)$

(Exercise: follow around the wires, make sure this is correct)

$\langle\!\langle - \rangle\!\rangle \ : \ \text{HypTerm}_{\Sigma} \ \to \ \text{Term}_{\Sigma}$

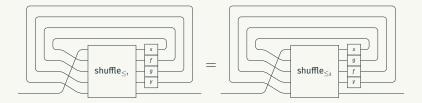
Proposition (Definability)

For every well-formed hypergraph F then $[\![\langle\!\langle F \rangle\!\rangle]\!] \equiv F$.

But we cannot conclude completeness yet!

 $\begin{array}{ll} \text{An interfaced linear} \\ \text{hypergraph} \end{array} \Rightarrow$

Unique morphism in the category, up to the equational theory Fortunately, we just need to show it for swapping two edges.



Proposition (Coherence)

For all orderings of edges \leq_x on a hypergraph F,

$$\langle\!\langle F \rangle\!\rangle_{\leq_1} = \langle\!\langle F \rangle\!\rangle_{\leq_2} = \cdots = \langle\!\langle F \rangle\!\rangle_{\leq_n}$$

Theorem (Completeness I)

For any interfaced linear hypergraph H, $[\langle \langle H \rangle \rangle] \equiv H$.

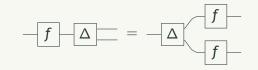
Theorem (Completeness II)

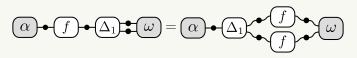
For any morphism $f \in \text{Term}_{\Sigma}$, $\langle\!\langle \llbracket f \rrbracket \rangle\!\rangle = f$.

Graph rewriting

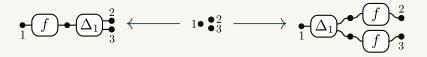
We express extra structure as additional axioms. These axioms can be expressed as rewrite rules.

$$f \cdot \Delta_n = \Delta_n \cdot f \otimes f$$





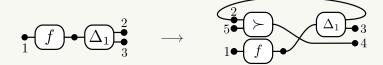
First let's see how it works with normal hypergraphs.



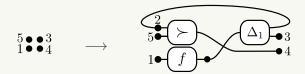
For a set of axioms $\mathcal{E} \in \text{Term}_{\Sigma}$, we write $[\![\mathcal{E}]\!]$ for their conversion into spans like this.

 $\underbrace{f}_{1} \underbrace{f}_{3} \underbrace{\Delta_{1}}_{3} \underbrace{2}_{0} \underbrace{A}_{0} \underbrace{A}$

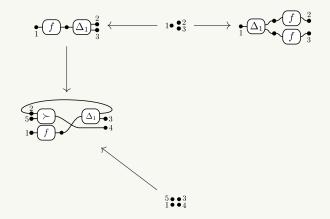
First we identify a matching morphism.



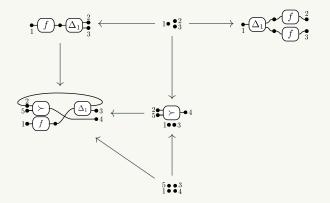
We also need an explicit morphism to denote the interfaces.



DPO rewriting

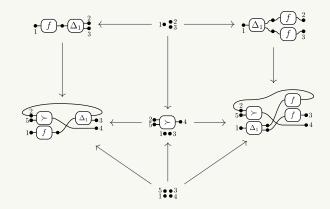


We then compute the pushout complement.



DPO rewriting

Then we perform a pushout on $C \leftarrow K \rightarrow R$.



We write $G \rightsquigarrow_{\mathbb{I}\mathcal{E}\mathbb{I}} H$ if rewriting can be performed in this way.

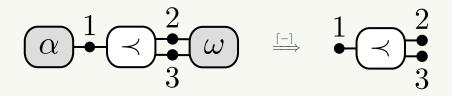
Not all structures are compatible with DPO rewriting.

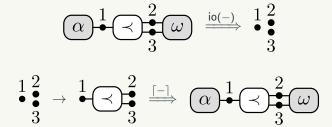
The framework of adhesive categories is often used to ensure that pushout complements are always unique, if they exist.

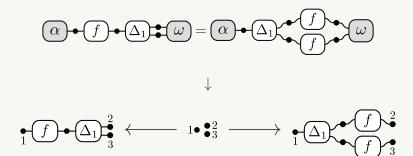
Proposition

The category of (vanilla) hypergraphs is adhesive.

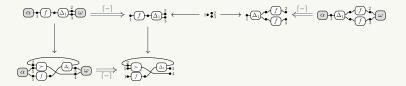
Unfortunately, $LHyp_{\Sigma}$ is not adhesive... We'll just do the rewriting in Hyp instead!

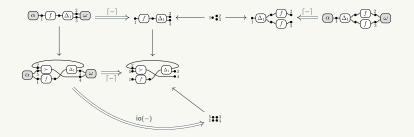


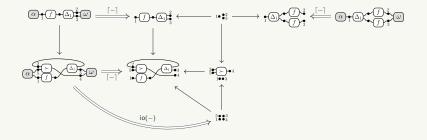


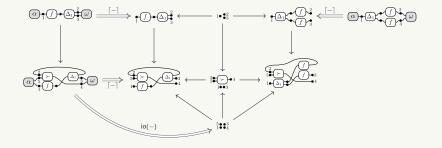


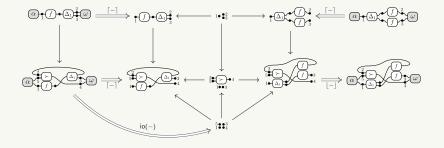
$\begin{array}{c} \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \end{matrix} \\ \textcircled{} \\ \end{matrix} \\ \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \end{matrix} \\ \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \end{matrix} \\ \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \end{matrix} \\ \textcircled{} \\ \end{matrix} \\ \textcircled{} \\ \end{array}{} \\ \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \end{array}{} \\ \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \end{array}{} \\ \textcircled{} \\ \textcircled{} \\ \end{array}{} \\ \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \end{array}{} \\ \begin{array}{} \begin{array}{} \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{} \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{} \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{} \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{} \\ \\ \\ \end{array}{} \\$ } \\ \\ \end{array}{} \\ \end{array}{} } \\ \\ \end{array}{} \\ } \\ \\ \end{array}{} \\ } \\ \end{array}{} } \\ \\ \\ \end{array} } \\ \\ \\ \end{array} } \\ \\ \\ \end{array} } \\ \\ \\





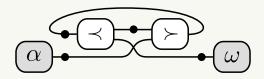






Can we generalise to arbitrary STMCs?

Just add vertex labels!



We have a sound and complete graphical language for STMCs.

We can reason in STMCs purely graphically.

We can add extra axioms using graph rewrites.

Just formulate the axioms as rewrite rules.

- F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi.
 Rewriting modulo symmetric monoidal structure.
 In 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–10. IEEE, 2016.
- H. Ehrig, M. Pfender, and H. J. Schneider.
 Graph-grammars: An algebraic approach.
 In 14th Annual Symposium on Switching and Automata Theory (swat 1973), pages 167–180. IEEE, 1973.

References ii

M. Hasegawa.

On traced monoidal closed categories.

Mathematical Structures in Computer Science, 19(2):217–244, 2009.

📔 A. Kissinger.

Pictures of processes: Automated graph rewriting for monoidal categories and applications to quantum computing, 2012.

P. Selinger.

A survey of graphical languages for monoidal categories. In *New structures for physics*, pages 289–355. Springer, 2010.