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Abstract

We examine a variant of hypergraphs that we call interfaced linear hypergraphs, with the aim of creating
a sound and complete graphical language for symmetric traced monoidal categories (STMCs) suitable
for graph rewriting. In particular, we are interested in rewriting for categorical settings with a Cartesian
structure, such as digital circuits. These are incompatible with previous languages where the trace is
constructed using a compact closed or Frobenius structure, as combining these with Cartesian product
can lead to degenerate diagrams. Instead we must consider an approach where the trace is constructed
as an atomic operation. Interfaced linear hypergraphs are defined as regular hypergraphs in which
each vertex is the source and target of exactly one edge each, equipped with an additional interface
edge. The morphisms of a freely generated STMC are interpreted as interfaced linear hypergraphs, up
to isomorphism (soundness). Moreover, any linear hypergraph is the representation of a unique STMC
morphism, up to the equational theory of the category (completeness). This establishes interfaced
linear hypergraphs as a suitable combinatorial language for STMCs. We then show how we can apply
the theory of adhesive categories to our graphical language, meaning that a broad range of equational
properties of STMCs can be specified as a graph rewriting system. The graphical language of digital
circuits is presented as a case study.

1 Introduction

Constructors, architects, and engineers have always enjoyed using blueprints, diagrams, floorplans and
other kinds of graphical representations of their designs. These are often more than simply illustra-
tions aiding the understanding of a formal specification, they are the specification itself. By contrast,
in mathematics, diagrams have not been traditionally considered first-class citizens, although they are
often used to help the reader visualise a construction or a proof. However, the development of new formal
diagrammatic languages for a variety of systems such as quantum communication and computation [12],
computational linguistics [13] and signal-flow graphs [3, 4], proved that diagrams can be used not just to
aid understanding of proofs, but also to formulate proofs. This formulation has multifaceted advantages,
from enabling the use of graph-theoretical techniques to aid reasoning [20] to making the teaching of
algebraic concepts to younger students less intimidating [18].

These graphical languages build on a mathematical infrastructure of (usually symmetric and strict)
monoidal categories [27], and in particular compact closed categories [29]. Systems modelled by mor-
phisms in a compact closed category have a general notion of interface port, so that any two ports can be
connected, provided the types match. This allows compact closed categories to describe systems with a
flexible and refined notion of causality, such as quantum systems [32] or games [9]. In contrast, systems
such as digital circuits have a stricter notion of causality, enforcing that connections may only happen
between ports with the same type but opposite input-output polarities. This requires a different kind
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1 INTRODUCTION

of categorical setting, that of a symmetric traced monoidal category [22], or STMC. These categories come
equipped with an explicit construct (the trace) to model causal feedback loops.

String diagrams [39] are becoming the established mathematical language of diagrammatic reasoning,
whereby equal terms are usually interpreted as isomorphic (or isotopic) diagrams. While this is enough
for reasoning about structural properties, properties which have computational content require a rewriting
of the diagram. To make this possible, diagrams must be represented as combinatorial objects, such as
graphs or hypergraphs, which have enough structure. The framework of adhesive categories is of particular
interest to us [35], as it implies that graph rewriting is always well-defined.

Our main motivation is to fully formalise prior work on diagrammatic reasoning for digital cir-
cuits [19, 20], for which we need a string diagram language of STMCs along with adhesive categorical
infrastructure for rewriting. It might seem that this is a solved problem, as combinatorial languages for
graph rewriting have already been studied as open graphs [14, 30] and hypergraphs [5, 44, 7], which satisfy
soundness and completeness. However, the completeness theorem raises for us insurmountable techni-
cal problems, which we set to overcome in this paper. In loc.cit. STMCs are constructed by embedding
them into the more expressive setting of a SMC equipped with a Frobenius structure, which induces a
compact closed structure into which an STMC can be embedded. To reason about digital circuits we re-
quire the framework of dataflow categories, which are STMCs in which the monoidal tensor is a Cartesian
product [11, 21]. It is the interaction between the diagonal morphism of the Cartesian product and the
Frobenius structure which is problematic.

In general it is well known that in compact closed categories finite products automatically become
biproducts [26]. This is enough to compromise the construction as a setting for modelling digital circuits,
which do not physically satisfy the equational properties of a biproduct. But the problem runs deeper, as
the Frobenius structure itself is not compatible with Cartesian product, as seen in the diagram below:

f

Frob=
f f

Cart=
f

On the left, the Frobenius structure equates the splitting and joining of the wires with a feedback
loop, implementing a trace structure. On the right, the splitting of the wires copies the co-unit of the
Frobenius co-monoid, resulting in a degenerate circuit. To solve this problem we need to define the trace
structure directly, and prove soundness and definability for these direct definitions.

Besides the major problem above, there are some small technical issues with hypergraphs that we
solve by reintroducing the concept of homeomorphism similar to that used in framed point graphs [30].
This allows us to represent the trace of the identity, which is not well-formed in vanilla hypergraphs as it
is a closed loop of wires. It also means we can identify a matching of a subgraph F in a graph Trx(F) by
using a monomorphism, which is essential for performing double pushout (DPO) graph rewriting.

The primary contributions of this paper are therefore as follows: we refine the definition of hyper-
graphs in [5] in order to define a sound and complete graphical language for STMCs that does not become
degenerate in the presence of Cartesian structure. We show that this language can be used with the frame-
work of adhesive categories, so any additional axioms can be expressed as graph rewrite rules without
any ambiguity. This allows us to make the proofs in [20] rigorous.

1.1 Structure of the report

The structure of the report is as follows. In §2 we recap the required background on monoidal categories,
and in particular Cartesian and symmetric traced monoidal categories, the primary focus of our work. In
§3 we introduce a standard definition of hypergraphs, and then refine this to obtain linear hypergraphs,
which are motivated by our study of string diagrams. §4 details several hypergraph constructs and op-
erations that will be of use to us. We then use these ingredients in §5 to show that we can represent
morphisms in a free PROP (a category of PROducts and Permutations, where objects are natural num-
bers) as hypergraphs. We take the opposite perspective in §6, to show that we can also recover categorical
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2 MONOIDAL CATEGORIES

terms from hypergraphs, enabling us to conclude both soundness and completeness. In §7 we study
graph rewriting, a useful application of our graphical language, and in §8 follow with a case study into
the axioms related to digital circuits. Finally in §9 we generalise our approach to consider terms from
any STMC, not just PROPs. The finer details of some of the more bureaucratic proofs can be found in the
appendices.

1.2 Notation

Let |X | be the cardinality of a set X. We write [n] ⊂ N as the subset of the natural numbers containing
0,1, · · · ,n−1. For two sets X and Y , let X +Y be their disjoint union and X −Y be the relative complement
of Y in X. Let (X,≤X) be a totally ordered set, where usually we will just write the carrier X. We take the
convention that the order is defined by the order the elements are written, i.e. in {x,y,z}, x < y < z and
for {x,y} ∪ {z,w},x < y < z < w. We use πi as a ‘projection’ function to denote the ith element of a totally
ordered set. For two functions f : X → Y and g : U → V , we denote as f + g : X +U → Y +V their
disjoint union that acts as f on elements of X and as g on elements of U .

2 Monoidal categories

We begin by recapping the concepts of monoidal categories. A category C is a collection of objects
A,B,C, ... with morphisms f ,g,h, ... between them. A morphism f between objects A and B is denoted
f : A → B. The morphisms between each pair of objects A→ B form a hom-set, denoted C(A,B). Each
object is equipped with an identity morphism idA : A → A. Morphisms can be composed sequentially: if
we have morphisms f : A → B and g : B → C we also have the morphism f ·g : A → C. Composition
is associative (f · (g · h) = (f · g) · h) and unital (id · f = f = f · id). In the language of string diagrams, we
represent morphisms as boxes, and composition by horizontal juxtaposition. The identity is drawn as an
empty wire. Equal morphisms in the category correspond to isomorphic diagrams – ‘only connectivity
matters’.

A B

f : A → B

f B C

g : B → C

g A C

f · g : A → C

f g A A

idA : A → A

A monoidal category [27] introduces a new binary operation known as the monoidal tensor, denoted −⊗−.
The unit object of the monoid is denoted I . Much like sequential composition, the tensor is associative
((f ⊗ g)⊗ h = f ⊗ (g ⊗ h)) and unital with respect to the identity of the unit object (idI ⊗ f = f = f ⊗ idI ).
When we write categorical terms, ⊗ binds tighter than ·, so f ⊗ g · h⊗ k should be read as (f ⊗ g) · (h⊗ k).
Graphically, the tensor is drawn as vertical juxtaposition and the unit object is drawn as ‘empty space’.

A B

f : A → B

f C D

g : C → D

g

f ⊗ g : A⊗C → B⊗D

A

C

B

D

f

g

idI : I → I

The addition of tensor means that there are multiple ways in which we can compose morphisms in se-
quence or in parallel that lead to equal terms. This is known as functoriality, and can be expressed as the
following axiom: (f ·g)⊗ (h ·k) = f ⊗h ·g⊗k. Functoriality means that using the one dimensional algebraic
notation can obfuscate the true nature of the inherently two dimensional structure. This is especially
important computationally, as numerous extra operations must be performed to manipulate a term ap-
propriately. Fortunately, the graphical notation eliminates this overhead, as both terms correspond to the
same diagram:
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2 MONOIDAL CATEGORIES

A

D

C

F

(f ⊗ h) · (g ⊗ k) : A⊗D → C ⊗F

f g

h k

To acquire a framework suitable for modelling systems, we need a way of crossing over the wires in
our diagrams. This is achieved by equipping each pair of objects A,B in our category with a symmetry
σA,B : A ⊗ B → B ⊗A. A category in symmetric monoidal category (or SMC), and braidings are called
symmetries. The symmetry satisfies the axioms of naturality f · g · σB,D = σA,C · f ⊗ g, hexagon σA,B ⊗ idC ·
idA ⊗ σB,C = σA,B⊗C and self-inverse σA,B · σB,A = idA ⊗ idB, illustrated below.

A

C

D

B

f

g
=
A

C

D

B

g

f

A
B
C

B
C
A

=
A
B
C

B
C
A

A
B

B
A

= A
B

B
A

We are particularly interested in free monoidal categories, where morphisms, or ‘terms’, are generated
over a monoidal signature Σ = (ΣO,ΣM ): a set of object variables and morphism variables (generators),
equipped with functions dom,cod : ΣM → Σ?O, where Σ?O is a list of object variables, denoting the
domain and codomain of each generator. Effectively, generators are the building blocks from which we
can form categorical terms, by composing generators in sequence or parallel with each other, identity
morphisms and symmetries. For example, the free monoidal category generated over the signature Σ =
{f : X → B⊗C,g : B⊗A → X} contains the following term:

f ⊗ idA · idB ⊗ σC,A · g ⊗ idC

X
A

f g X
C

Lemma 1 (Staging). Any morphism f ∈ TermΣ can be written as in the form f = f0 · f1 · · · · · fn, where fi is a
tensor containing only one non-identity morphism, fi = idp ⊗ k ⊗ idq.

Proof. By functoriality and unitality.

A useful class of symmetric monoidal categories are called PROPs (PROduct and Permutation categories),
categories with natural numbers as objects and addition as tensor product. These are especially natural
with regards to graphical notation as an object n ∈ N can be drawn as n wires.

Lemma 2 (Composite symmetry). Any symmetry σm,n in a free PROP can be expressed as a combination of
multiple symmetries σ1,1 and identities.

Proof. By the hexagon axiom.

2.1 Symmetric traced monoidal categories

So far, the wires in our string diagrams have only travelled in one direction across the page: from left to
right. However to model some systems we may want to ‘bend’ these wires, such as to model feedback.
A common way of doing this is to use a compact closed category [29], in which every object A has a dual
A? , drawn as a wire travelling from right to left. Each object is also equipped with additional structural
morphisms known as the cup : A? ⊗A → I and the cap : I → A⊗A? for ‘bending’ wires. However,
this setting is not suitable for all applications. In a compact closed category there is a flexible notion of
causality, where morphisms do not have so much a notion of input and output but rather a bidirectional
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2 MONOIDAL CATEGORIES

interface port. Instead, we may wish to enforce a strict notion of causality, where only outputs of mor-
phisms can connect to inputs. To do this, we must look at a flavour of monoidal categories known as
symmetric traced monoidal categories (or STMCs for short), which were introduced by Joyal et al. [28] and
refined by Hasegawa [22].

An STMC is an SMC with an extra family of operations known as trace operators. For a morphism
f : X ⊗A → X ⊗ B, we can trace it to form the morphism TrXA,B(f ) : A → B. We will often drop the
subscript for clarity when there is no ambiguity. A trace is represented graphically by ‘bending around’
one of the output wires to join up with one of the input wires. This enables wires to travel in the opposite
direction for a period, but all wires must still be oriented left-to-right when interacting with morphisms,
as shown below:

fX
A

X
B

TrXA,B(f )
−−−−−−−→

A B
f

There are several (equivalent) formulations of the axioms of STMCs, but here we present the four detailed
by Hasegawa in [22].

Tightening

TrXA,D(idX ⊗ g · f · idX ⊗ h) = g ·TrXB,C(f ) · h

A Dg f
h

=
A Dg f

h

Yanking

TrXX,X(σX,X) = idX

X X

= X X

Superposing

TrXA⊗C,B⊗C(f ⊗ idC) = TrXA,B(f )⊗ idC

C
A

C
Bf =

C
A

C
Bf

Exchange

TrYA,B(TrXY⊗A,Y⊗B(f )) = TrXA,B(TrYX⊗A,X⊗B(σY ,X ⊗ idA · f · σX,Y ⊗ idB))

A B
f

=
A B

f

As with regular symmetric monoidal categories, we can generate free STMCs over a given signature with
the addition of the trace operator. For example, the free STMC defined over Σ contains the following
term:

5



2 MONOIDAL CATEGORIES

TrX(≺⊗ idA · idB ⊗ σD,A · �⊗ idD )

A

f g

C

We can also derive one other important lemma that holds in any free STMC.

Lemma 3 (Global trace). For any morphism f ∈ TermΣ, we can represent it as Trx(f̂ ), where f̂ is a morphism
containing no trace.

Proof. By superposing and tightening.

2.2 Monoidal theories

On their own, the axioms of symmetric traced monoidal categories are not particularly interesting. To
model systems we need to impose additional structure on our categories, which can be done with the
introduction of new axioms. A monoidal theory is a monoidal signature equipped with a set of equations:
pairs of terms with equal domain and codomain, e.g. for generators f ,g : A → A, a suitable equation
could be f · g = g · f . Well-known monoidal theories include those of commutative monoids, Frobenius
monoids and non-commutative monoids, which contain various combinations of generators for forking
and splitting wires (see [5, Example 2.1] for details). Monoidal theories can also be used to model the
operational semantics of compositional systems: the generators are the building blocks of that system
and the axioms represent the operational semantics that we can use to reduce complex systems into
simpler ones. In §8 we will examine a theory at the centre of our research, that of digital circuits. For now,
we will present an example that motivate our work.

2.2.1 Example: Cartesian categories

A Cartesian category is a symmetric monoidal category where each object is equipped with a diagonal
morphism ∆A : A → A⊗A, and where the unit object is terminal: for every object A, there is a unique
morphism �A : A → I .

∆A : A → A⊗A

A ∆A
A
A

�A : A → I

A �A

In essence, a Cartesian category is a monoidal category in which the tensor product is the Cartesian
product. In the Cartesian monoidal theory, the families of diagonals and terminal morphisms are the
generators; the accompanying axioms can be seen in Table 1.

Cartesian categories that are also traced are known as dataflow categories [39, §6.4]. The interaction of
the trace with the Cartesian product is especially interesting, as it admits a fixpoint operator, as noticed
by Hasegawa [21] and Martin Hyland independently. Equivalent observations had also been made before
the introduction of traced monoidal categories, such as by Bloom and Ésik [2] and Ştefǎnescu [43].

Theorem 4 (Trace-fixpoint correspondence [21]). A Cartesian category C is traced if and only if it has a
family of functions (−)† : C(A⊗X,X) → C(A,X)

A f † X =
A

f ∆ X

such that the following axioms are satisfied:
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2 MONOIDAL CATEGORIES

Naturality axioms

f ·∆B = ∆A · f ⊗ f A→ B⊗B
f · �B = �A A→ 0

Commutative comonoid axioms

∆A ·∆A ⊗A = ∆A · (A⊗∆A) A→ A⊗A⊗A
∆A · (�A ⊗A) = A A→ A
∆A · (A⊗�A) A→ A
∆A · σA,A = ∆A A→ A⊗A

Coherence axioms

∆0 = 0 0→ 0
∆A⊗B · (A⊗ σA,B ⊗B) = ∆A ⊗∆B A⊗B→ A⊗B⊗A⊗B
�A = 0 0→ 0
�A⊗B = �A ⊗�B A⊗B→ 0

Table 1: The axioms for a Cartesian monoidal category [39]

Naturality

(idX ⊗ g · f )† = g · (f )†

f
g

∆
B X =

B g
f ∆ X

Dinaturality

(∆X⊗A · g ⊗�X ⊗ idA · f )† = ∆A · (∆X⊗A · g ⊗�X · f )† ⊗ idA · f

A
∆

g

� f ∆ X

=

A ∆

∆

g

� f ∆
f X

Diagonal

(∆X ⊗ idA · f )† = ((f )†)†

A
∆ f ∆

X

=

A
f ∆

∆
X

We can use the fixpoint operator to model feedback in our systems. In particular, we can derive the slightly
simpler fixed-point equation from the dinaturality axiom [22] that allows us to ‘unfold’ the fixpoint.

f † = ∆A · f † ⊗ idA · f

A
f ∆ X =

A ∆

f ∆

f X

7



3 HYPERGRAPHS

2.2.2 Graphical reasoning with monoidal theories

The reason that graphical languages are so useful when dealing with monoidal categories is that the
axioms are absorbed into the notation, and the tedious bureaucracy is eliminated. Unfortunately, once
we start adding extra structure this starts to fall apart. For example, take the example of the naturality of
the Cartesian diagonal.

A B
B

f ∆ =

f ·∆B = ∆A · f ⊗ f

A
B

B
∆

f

f

Clearly, this axiom cannot be absorbed by the graphical notation: even the number of boxes differs! To
tackle these axioms, we must consider diagrams not just up to isomorphism, but up to rewriting. To
do this, we must move away from the topological string diagrams and towards a more combinatorial
diagram, where vertices and edges are explicitly defined. With these diagrams we can perform graph
rewriting, of which numerous formalisms and frameworks exist [15, 16, 35].

As we have already observed in the introduction, this is not a new endeavour: previously this has been
studied with string graphs [14, 30] and hypergraphs [5, 44, 7, 8]. However, these are rooted in compact
closed categories, which are incompatible with the Cartesian product. This is because the Cartesian
product automatically becomes a biproduct in a compact closed setting [26], which is not always suitable
(e.g. in the category of digital circuits detailed in §8). Therefore, we will need to define a slightly different
combinatorial structure.

3 Hypergraphs

We begin by recalling a standard notion of hypergraphs in which edges have ordered sources and targets,
as in [5]. Let A be a countably infinite set of atoms (or names, in the sense of [37]).

Definition 5 (Hypergraph). A hypergraph is a tuple H = (V ,E,s, t) where

• V ⊂ A is a finite set of vertices.

• E is a set containing, for each k, l ∈ N, finite sets E[k, l] of hyperedges with k sources and l targets.

• s, t are families of functions denoting sources and targets of edges, i.e. for each E[k, l]:

– for each i < k, there exists the ith source map s[i] : E[k, l] → V

– for each i < l, there exists the jth target map t[i] : Ek,l → V

We call the in-degree, written in(v) (resp. out-degree, written out(v)) of a vertex the number of edges it is
the target (resp. source) of. We call a hypergraph discrete if it has no edges. To reduce our use of space,
for a hypergraph H = (V ,E,s, t) we will often use VH ,EH etc. to access members of the tuple.

A hypergraph signature is a set of labels Σ equipped with functions dom,cod : Σ → N. A labelled
hypergraph over signature Σ is a hypergraph H = (V ,E,s, t) and a labelling function Λ : E → Σ, such
that for any e ∈ E, if Λ(e) = l then dom(l) = |s(e)| and cod(l) = |t(e)|.

Example 6. Below there is an informal drawing of a hypergraph over the hypergraph signature

Σ = {≺ : 1 → 2, � : 2 → 1}.

Vertices are drawn as black dots. Edges are drawn as boxes, with ordered sources and targets connected on the
left and right respectively.
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3 HYPERGRAPHS

V = {v0,v1,v2,v3,v4} E[1,2] = {e0, e2} E[2,1] = {e1}
s[0](e0) = v0 t[0](e0) = v2 t[1](e0) = v3

s[0](e1) = v0 s[1](e1) = v1 t[0](e1) = v3

s[0](e2) = v3 t[0](e2) = v4 t[1](e2) = v1

Λ = {e0 7→ ≺, e1 7→ �, e2 7→ ≺}

Category. A labelled hypergraph homomorphism h : F → G consists of functions hV : VF → VG and,
for each k, l ∈ N, hE : EF[k, l] → EG[k, l] such that sources, targets and labels are preserved.

EF[k, l] VF

EG[k, l] VG

sF [i]

hE hV

sG[i]

EF[k, l] VF

EG[k, l] VG

tF [i]

hE hV

tG[i]

EF Σ

EG Σ

ΛF

hE id

ΛG

If hV and hE are bijective then F and G are isomorphic F ≡ G. It is immediate that ≡ is an equivalence
relation, and we quotient hypergraphs by it.

Hypergraph homomorphisms are the morphisms in the category of hypergraphs Hyp, a functor cate-
gory [5]. Hypergraph signatures Σ can be seen as hypergraphs, with a vertex v and edges for each label
m→ n in the signature, with v appearing m (resp. n) times in its sources (resp. targets). Thus labelled
hypergraphs are defined as a slice category.

Definition 7 (Category of hypergraphs [5]). Let Hyp be the functor category [X,Set], where X has as objects
pairs of natural numbers (m,n) and an extra object ?. For each object x = (m,n), there are m+ n arrows from x
to ?. Let HypΣ = Hyp/Σ be the slice category over a hypergraph signature Σ.

We call a hypergraph homomorphism an embedding if its components are injective.

Lemma 8. A morphism in HypΣ is a monomorphism if and only if is an embedding.

Proof. For a morphism m : F → G to be mono, for any two morphisms p,q : H → F (for any other
hypergraph H), if m ◦ p = m ◦ q then p = q. First we show that if m is an embedding it must be mono. If
we consider each equivalence map of m separately, this means that we must show that mV ◦pV =mV ◦qV
implies pV = qV (and the same for mE). But we have assumed that mT is injective, so the antecedent
reduces to gT = hT . So m is mono.

Conversely, if m is not an embedding, it cannot be a monomorphism. A morphism that is not an
embedding maps multiple vertices or edges into one. Therefore for a morphism m : F → G that maps
vertices v1 and v2 in F to v in G, there exist two morphisms p,q : G → F (in p, v 7→ v1 and in q, v 7→ v2),
and similar for morphisms that map multiple edges to one. Therefore there exist p,q such that p , q, so
m is not mono.

3.1 Linear hypergraphs

In hypergraphs, vertices can connect to an arbitrary number of edges. However, to make wires in string
diagrams split or join, an additional Frobenius structure must be imposed. This structure works partic-
ularly well in the framework of compact closed categories, but this is a structure which we aim to avoid.
Therefore we must restrict hypergraphs so that the in-degree and out-degree of each vertex is at most
one: vertices with in-degree 0 represent the inputs of the term and vertices with out-degree 0 represent
the outputs of the term. We call a hypergraph linear if this condition is satisfied.

While we identified the input and output vertices of the hypergraph above, they are not ordered,
and thus we do not have a true ‘interface’. One option is to identify the interfaces by means of certain

9



3 HYPERGRAPHS

(ordered) cospans, as in [5], but we take an alternative approach in which we build our interfaces directly
into our hypergraphs by means of an additional interface edge •. We write the set of edges and this
interface as E + 1.

We could simply add this edge to our existing definition of hypergraphs. However, we wish to define
a sound and complete graphical language: we want every diagram to correspond to a term in our category.
Therefore we take this opportunity to reformulate our definition of hypergraphs, yielding interfaced linear
hypergraphs. In Section 7 we shall see how our definition can be related the more traditional definition.

Definition 9 (Interfaced linear hypergraph). An interfaced linear hypergraph is a tupleH = (E,S,T ,κ) where

• A finite set E ⊂ A of edges

• S,T are finite sets of containing, for each edge e ∈ E + 1, finite totally ordered sets of source and target
vertices S[e],T [e] ⊂ A, such that for any V1,V2 ∈ S ∪ T , V1 ∩V2 = ∅.

• κ :
⋃
e∈E T [e] →

⋃
e∈E S[e] is a connections bijection between targets and sources.

We split vertices into sets of sources S and targets T , with a connections bijection κ between them. The
ordering of sources and targets of edges is determined by the order of the sets. Splitting the vertices
in this way allows us to enforce that each vertex is the source and target of only one edge while still
retaining the order of sources and targets for each edge. It also simplifies the operations defined below:
for example, when we compose hypergraphs we ‘coalesce’ the outputs of F and inputs of G together, as
explained in Section 4.2. With one set of vertices, we could delete the outputs of F and the inputs of
G, and then define ‘fresh’ vertices as the bridge between the two hypergraphs. However, we would have
to redefine the orders on the vertices such that the ordering on the non-interface edges was preserved.
Keeping sources and targets separate eliminates this problem. To simplify notation when talking about
members of the source and target sets, we will use lower case variables to denote a single vertex, i.e. s ∈ S
means s ∈

⋃
e∈E S[e]. T [•] is the set of inputs, and S[•] is the set of of outputs.

For an interfaced linear hypergraph H with m inputs and n outputs, we write it as H : m → n,
where m → n is the type of the hypergraph. As with simple hypergraphs, we can define labelled linear
hypergraphs over a signature Σ with labelling function Λ, where Λ(e) = φ is valid only if |S[e]| = dom(φ)
and |T [e]| = cod(φ).

Example 10. A linear hypergraph over Σ can be drawn in two ways, illustrated below. In a more formal notation
(left), edges are stacked with their ordered source (resp. target) vertex sets on the left (resp. right) of the diagram.
Connections are represented by the arrow on the far right. We represent the inputs (resp. outputs) of the term as
incident to a grey edge labelled α (resp. ω).

A more intuitive representation (right) is similar to how we drew hypergraphs earlier, where we draw con-
nected target and source vertices as a single black dot. The orders on the vertices dictate the position of each
vertex’s connection to an edge. The more formal representation can be unambiguously recovered from the more
intuitive one.

E = {e0, e1}
T [•] = {t0}

S[e0] = {s0} T [e0] = {t1, t2}
S[e1] = {s1, s2} T [e1] = {t3}

S[•] = {s3}
κ = {t0 7→ s2, t1 7→ s1, t2 7→ s3, t3 7→ s0}

Λ = {e0 7→ ≺, e1 7→ �}

Category. A (labelled) linear hypergraph homomorphism h : F → G consists of functions

hS :
⋃
e∈EF

SF[e] →
⋃
e∈EG

SG[e] hT :
⋃
e∈EF

TF[e] →
⋃
e∈EG

TG[e] hE : EF → EG

10



4 OPERATIONS AND CONSTRUCTS

between sources, targets and edges, such that the first four diagrams below commute. If hT , hS and hE
are bijective and the latter two diagrams below also commute, then F and G are isomorphic written F ≡ G.
It is immediate that ≡ is an equivalence relation, and we quotient labelled interfaced linear hypergraphs
by it.

homomorphism︷                                                                                     ︸︸                                                                                     ︷
EF SF

EG SG

SF [−]

hE h?S

SG[−]

EF TF

EG TG

TF [−]

hE h?T

TG[−]

⋃
TF

⋃
SF

⋃
TG

⋃
SG

κF

hT hS

κG

EF Σ

EG Σ

ΛF

hE id

ΛG

1 TF

1 TG

TF [−]

id h?T

TG[−]

1 SF

1 SG

SF [−]

id h?S

SG[−]

︸                                                                                                                             ︷︷                                                                                                                             ︸
equivalence

Labelled interfaced linear hypergraphs form a category LHyp•
Σ

with objects the labelled interfaced linear
hypergraphs over signature Σ and morphisms the labelled interfaced linear hypergraph homomorphisms.

Lemma 11. A morphism in LHyp•
Σ

is mono if and only if it is an embedding.

Proof. As with simple hypergraphs (Lemma 8).

We will now use the term ‘hypergraph’ to mean ‘interfaced linear hypergraph’ unless specified.

4 Operations and constructs

We can create hypergraphs compositionally using the operations of an STMC: composition, monoidal
tensor, symmetry and trace. In this section we will detail their definitions, in addition to some other
important components of our hypergraph framework.

When performing operations, it is imperative that our hypergraphs do not become degenerate. We call
a hypergraph well-formed if for any V1,V2 ∈ S ∪ T , V1 ∩V2 = ∅, κ is bijective, and the labelling condition
is satisfied. Some of the more bureaucratic proofs in this section have been omitted: to find them the
interested reader can turn to Appendix A.

4.1 Equivariance

When performing operations on hypergraphs, the vertices and edges of the hypergraphs involved must
be disjoint so that we do not create degenerate hypergraphs. However, this is not always the case, such as
when composing a hypergraph with itself. Fortunately, since the sets of vertices and edges are subsets of
the countably infinite set of atoms A, we can simply rename the problematic edges or vertices [37].

Definition 12 (Action). For any permutation τ : A → A, an action τ �− acts as follows:

Element For any elements x ∈ A, y < A, τ � x = τ(x) and τ � y = y.

Set For any set X, τ �X = {τ � x |x ∈ X}.

Totally ordered sets As with regular sets, preserving the order i.e. if x < y then τ � x < τ � y

Function For any function f : X → Y , (τ � f )(v) = τ � f (τ−1 � v).

Definition 13 (Renaming). For any labelled interfaced linear hypergraph

F = (E,S,T ,κ,Λ)

and for any permutation τ : A → A we can apply τ to F to rename it:

τ �F = (τ �E,τ � S,τ � T ,τ �κ,τ �Λ).

11



4 OPERATIONS AND CONSTRUCTS

Proposition 14 (Equivariance of hypergraphs). For any labelled interfaced linear hypergraph F : m → n
and permutation τ : A → A, τ �F ≡ F.

Proof.
hT (v) = τ−1 � v hS(v) = τ−1 � v hE(e) = τ−1 � e

Therefore the definition of F is equivariant under name permutations, so we are justified in renaming
vertices and edges ‘on the fly’. Since we use graphs up to isomorphism, this will implicitly also quotient
by equivariance.

4.2 Composition

To compose hypergraphs sequentially, we ‘redirect’ any vertices that connected to the output of the first
hypergraph to those originally connected to the input of the second hypergraph. Graphically, we juxta-
pose the hypergraphs horizontally:

Definition 15 (Composition). For any two labelled interfaced linear hypergraphs F : m → n andG : n → p
over signature Σ:

F : m → n = (EF ,SF ,TF ,κF ,ΛF) G : n → p = (EG,SG,TG,κG,ΛG)

we define their composition as follows.

H : m → p = F ·G = (EH ,SH ,TH ,κH ,ΛH )

The new set of edges is simply the disjoint union of the edges in F and G, and we do the same for the
labelling function. To obtain the new sets of vertices, we delete the outputs of F and the inputs of G.

EH = EF +EG ΛH = ΛF +ΛG

SH [•] = SG[•] SH [e ∈ EF] = SF[e] SH [e ∈ EG] = SG[e]

TH [•] = TF[•] TH [e ∈ EF] = TF[e] TH [e ∈ EG] = TG[e]

The connections function maps a vertex connected to the ith output of F to the vertex connected to the
ith input of G.

κH (v) =

κG(πi(TG[•])) if κF(v) = πi(SF[•])
κF +κG otherwise

This can be drawn formally as follows:

12



4 OPERATIONS AND CONSTRUCTS

Proposition 16 (Well-formedness of composition). For two labelled interfaced linear hypergraphs F : m → n
and G : n → p, F ·G is a well-formed labelled interfaced linear hypergraph.

Proof. We have only removed vertices so the sources and targets must still be disjoint. The only change
in the connections function means that the vertices that originally connected to the output vertices of
F (which have been deleted) now connect to the sources originally connected to the input vertices of
G (which have also been deleted), so κ is bijective. The incidence of vertices on regular edges is also
unaffected, so the labelling condition is satisfied.

The unit of composition is the identity hypergraph, a hypergraph where all vertices are the sources and
the targets of the interface. Below are examples for n = 1 and n = 2.

Definition 17 (Identity hypergraph). An identity hypergraph idn : n → n over signature Σ is defined as

idn = ({S[•]}, {T [•]},∅,κ,∅)

where S[•],T [•] ⊂ A are finite disjoint totally ordered sets, |S[•]| = |T [•]| = n, and κ(πi(T [•])) = πi(S[•]).

4.3 Monoidal tensor

We can also compose hypergraphs in parallel, which is known as their monoidal tensor. We simply com-
bine their input and outputs, and leave everything else untouched. Graphically, we can represent this by
juxtaposing them vertically.

Definition 18 (Monoidal tensor). For any two labelled interfaced linear hypergraphs F : m → n and
G : p → q over a signature Σ:

F = (EF ,SF ,TF ,κF ,ΛF) G = (EG,SG,TG,κG,ΛG)

we define their monoidal tensor as follows.

H : m+ p → n+ q = F ⊗G = LHyp•Σ[H]

Once again, the edges and labels are the union of those in F and G.

EH = EF +EG ΛH = ΛF +ΛG

We do not need to delete any vertices, only combine the interfaces.

SH [e ∈ EF] = SF[e] SH [e ∈ EG] = SG[e] SH [•] = SF[•] + SG[•]

TH [e ∈ EF] = TF[e] TH [e ∈ EG] = TG[e] TH [•] = TF[•] + TG[•]

Subsequently the connections function is just the union of those in F and G.

κH = κF +κG

This can be drawn formally as follows:

13



4 OPERATIONS AND CONSTRUCTS

Proposition 19 (Well-formedness of tensor). For any two labelled interfaced linear hypergraphs F : m → n
and G : p → q, F ⊗G is a well-formed labelled interfaced linear hypergraph.

Proof. We have not added any new vertices, so the sources and targets are still disjoint. The connections
of each hypergraph are unaffected, so κ is a bijection. Likewise, we have not interfered with the sources
and targets of regular edges, so the labelling condition is satisfied.

The unit of monoidal tensor is the empty hypergraph (an identity hypergraph on 0). This is simply a
hypergraph with no edges or vertices. Graphically this is represented as two empty interfaces.

Definition 20 (Empty hypergraph). The empty hypergraph id0 : 0 → 0 over signature Σ is defined as

id0 = (∅,∅,∅,∅,∅)

−⊗− is a bifunctor, so there may be multiple orders in which we can perform sequential composition or
monoidal tensor that still result in the same hypergraph.

Proposition 21 (Bifunctoriality I). For any m,n ∈ N, idm ⊗ idn ≡ idm +n

Proposition 22 (Bifunctoriality II). For any labelled interfaced linear hypergraphs F : m → n, G : r → s,
H : n → p, K : s → t, F ⊗G ·H ⊗K ≡ (F ·H)⊗ (G ·K).

4.4 Symmetry

To swap the orders of vertices in the interfaces, we require a new construct, named the swap hypergraph.
This hypergraph swaps over two wires.

14



4 OPERATIONS AND CONSTRUCTS

Definition 23 (Swap hypergraph). The swap hypergraph for two wires σ1,1 is defined as

σ1,1 = (∅, {S[•]}, {T [•]},κ,∅)

where S[•] = {c,d}, T [•] = {a,b}, a,b,c,d ∈ A, κ(a) = d, κ(b) = c.

By composing multiple copies of the swap hypergraph in sequence and parallel we can build up con-
structs in which we swap many wires.

Definition 24 (Composite swap). For any m,n ∈ N, we can define a composite swap hypergraph as follows.

σm,n : m + n → n + m

σ0,n = idn

σm,0 = idm

σ1,1 = σ1,1

σm+1,1 =m⊗ σ1,1 · σm,1 ⊗ 1

σ1,n+1 = σ1,n ⊗ 1 ·n⊗ σ1,1

σm+1,n+1 = 1⊗ σ1,n ⊗ 1 · σm,n ⊗ σ1,1 ·n⊗ σm,1 ⊗ 1

For some proofs, it may be preferential to represent composite swaps in a non-inductive way, and instead
think in terms of swapping the sets of the input and output vertices.

15



4 OPERATIONS AND CONSTRUCTS

Lemma 25 (Alternate swap). For any m,n ∈ N, aa composite swap hypergraph σm,n can be written in the form

σm,n = (∅, {S[•]}, {T [•]},κ,∅)

where A,B,C,D ⊂ A are disjoint sets such that |A| = |D| =m, |B| = |C| = n, S[•] = C+D, S[•] = A+B, and

κ(πi(A)) = πi(D) κ(πi(B)) = πi(C)

Composite swap hypergraphs are natural: we can ‘push through’ hypergraphs composed on either side.

Proposition 26 (Naturality of swap). Form,n,p,q ∈ N and labelled interfaced linear hypergraphs F : m → n
and G : p → q,

F ⊗G · σn,q ≡ σm,p ·G⊗F

4.5 Homeomorphism

The operations so far have been fairly straightforward. However, a subtlety arises when we consider the
trace. A naive approach to performing Trx(F) would be to take the first x inputs and outputs and join
them together. Now consider the trace of the identity: one might assume that Trx(idx) = id0 as it is simply
a closed loop and does not ‘affect’ the term per se, but this is is not always the case [23, §6.1]. So we
cannot discard these loops, but we cannot represent closed loops in vanilla hypergraphs as vertices can
only connect to edges.

This issue arises because we have ‘absorbed’ the identity morphisms, so to solve this problem we
introduce the notion of homeomorphism to create identity edges 1 → 1, drawn as grey diamonds. We
write the set of identity edges in a hypergraph as E[id], and as such our hypergraph tuple becomes H =
(E,E[id],S,T ,κ,Λ). The sources and targets of these identity edges must be preserved by homomorphism.
In general, we can introduce or remove identity edges at will by performing an expansion or smoothing
respectively.

The only exception is when the source and target vertex of the identity edge are connected. Performing a
smoothing here would create an invalid hypergraph.

Definition 27 (Expansion). For a labelled interfaced linear hypergraph F = (EF ,EF[id],SF ,TF ,κF ,ΛF), and
s ∈ SF , t ∈ TF such that κF(t) = s, we can perform an expansion on (t, s) to yield hypergraph

G = (EF ,EF[id] + {eid},SF + S[eid],TF + T [eid],κH ,ΛF)

with eid fresh in A, S[eid] = {s′}, T [eid] = {t′}, s′ , t′ fresh in A and

κH (v) =


s′ if v = t

s if v = t′

κF(v) otherwise

16



4 OPERATIONS AND CONSTRUCTS

Proposition 28 (Well-formedness of expansion). For any labelled interfaced linear hypergraph F containing
target vertex v and source vertex s, where κ(t) = s, the result of performing an expansion on (t, s) is a well formed
labelled interfaced linear hypergraph.

Proof. All introduced vertices are fresh in A, so the sources and targets are disjoint. One target vertex v
connects to the fresh source vertex, and the fresh target vertex connects to its original connection κ(v), so
κ is bijective. The regular edges are unaffected, so the labelling condition is satisfied.

Definition 29 (Smoothing). For a labelled interfaced linear hypergraph F = (EF ,EF[id] + {eid},SF ,TF ,κF ,ΛF),
where S[eid] = {s} and T [eid] = {t}, κF(t) , s, we can perform a smoothing on eid to yield hypergraph

G = (EF ,EF[id],SF − SF[eid],TF − TF[eid],κH ,ΛF)

κH (v) =

κF(t) if κ(v) = t

κF(v) otherwise

Proposition 30 (Well-formedness of smoothing). For any labelled interfaced linear hypergraph containing
an identity edge eid with source s and target t, κ(t) , s, the result of performing a smoothing on eid is a well
formed labelled interfaced linear hypergraph.

Proof. We only remove vertices, so the sources and targets are disjoint. The change in the connections is
that the target vertex that original connected to the source of the identity edge now redirects to the source
vertice connected to by the target of the identity edge, so κ is bijective. The regular edges are unaffected,
so the labelling condition is satisfied.

We call an interfaced linear hypergraph minimal if no smoothings can be performed. We quotient hyper-
graphs by homeomorphism and always draw the minimal version.

4.6 Trace

Now equipped with homeomorphism, we can define a suitable trace operation. To trace a hypergraph
with one wire, we create a new identity edge with π0(SF[•]) and π0(TF[•]) as its source and target respec-
tively.

The use of the identity edge ensures that we can represent the trace of the identity as a valid hypergraph.

Tracing multiple wires is performed inductively. The trace of no wires is equal to the original hypergraph.

To trace multiple wires, we simply trace one at a time.

17



4 OPERATIONS AND CONSTRUCTS

Definition 31 (Trace). For a labelled interfaced linear hypergraph

F : x+m → x+n = (EF ,EF[id],SF ,TF ,κF ,ΛF)

we can recursively define its trace of x wires Trx(F) : m → n as

Tr0(F) = F

Trx+1(F) = Tr1(Trx(F)) for x > 0

with the base case defined as follows.

H = Tr1(F) = (EH ,EH [id],SH ,TH ,κH ,ΛH )

To perform a trace, we must introduce one identity edge to join the first input and output together, and
ensure this does not create a closed loop of wires. Otherwise, the edges and labels remain the same.

EH = EF EH [id] = EF[id] + {eid} eid fresh in A ΛH = ΛF

We take the first input and output vertex, and set them to be the target and source of the identity edge
respectively.

SH [•] = SF[•]−π0(SF[•]) S[eid] = {π0(SF[•])} SH [e ∈ EF] = SF[e]

TH [•] = TF[•]−π0(TF[•]) T [eid] = {π0(TF[•])} TH [e ∈ EF] = TF[e]

Since we have not deleted any vertices, the connections bijection remains the same.

κH = κF

After this operation, we can smooth the term as much as possible to remove any redundant identity edges,
while still preserving the loops that do not connect to any regular edges.

The whole procedure can be drawn formally as follows:

Proposition 32 (Well-formedness of trace). For any labelled interfaced linear hypergraphs F : x+m → x+n,
Trx(F) is a well-formed labelled interfaced linear hypergraph.

Proof. We have only moved a source and target from one edge to the identity edge, so the sets are still
disjoint. The connections bijection is unchanged, so κ is bijective. The regular edges are unaffected, so
the labelling condition is satisfied.

With trace defined, this means that we have all the operations of a STMC defined in terms of interfaced
linear hypergraphs. Now we must show that hypergraphs equipped with these operations form a sound
and complete graphical language.

18



5 SOUNDNESS

5 Soundness

We propose hypergraphs as a graphical language for STMCs. In particular we will focus on traced
PROPs [34], categories with natural numbers as objects and addition as tensor product. First we con-
sider soundness.

We fix a traced PROP TermΣ of morphisms freely generated over a signature Σ, and assemble labelled
interfaced linear hypergraphs into the traced PROP HypTermΣ, in which the morphisms m → n are
hypergraphs of type m→ n, with composition, tensor, symmetry and trace defined as above.

Definition 33 (Interpretation functor). We define the interpretation functor from terms to labelled interfaced
linear hypergraphs as the identity-on-objects traced monoidal functor ~−�Σ : TermΣ → HypTermΣ.

We omit the subscript if unambiguous. ~−�Σ is defined recursively over the syntax of the term. For a
generator φ : m → n, we interpret it as an edge with m sources and n targets.

Formally, for a generator φ : m → n, this is defined as

~φ�Σ = ({e fresh in A},S,T ,κ,Λ)

where

S[•] = {si fresh in A | i < m} S[e] = {si+m fresh in A | i < n} Λ(e) = φ

T [•] = {ti fresh in A | i < m} T [e] = {si+m fresh in A | i < n} κ(ti) = si

This can be drawn formally as follows.

Identity and symmetry morphisms translate into their hypergraph versions (Definitions 17 and 23)

~idn� = idn ~σm,n� = σm,n

To generate hypergraphs of larger terms, we can combine the morphism, identity and swap hypergraphs
using composition and monoidal tensor, or by using the trace operator.

~f · g� = ~f � · ~g� ~f �⊗ ~g� ~Trx(f )� = Trx(~f �)

Proposition 34 (Well-formedness). For any term f in a traced PROP TermΣ, ~f �Σ is a well-formed labelled
interfaced linear hypergraph.

Proof. Generator, identity and swap hypergraphs are well-formed, and all other operations involved cre-
ate well-formed interfaced linear hypergraphs (Propositions 16, 19, 32).

To show soundness, we must examine that the axioms of STMCs are satisfied in the language of labelled
interfaced linear hypergraphs. as illustrated in Figure 1.

19



5 SOUNDNESS

Figure 1: The axioms of STMCs, represented using labelled interfaced linear hypergraphs.
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ω

e1
�

v9 → v4

e0
≺

v7 → v3

v8 → v1

α
v5 → v2

v6 → v0

v3

v4

v1

v0

v2

≺

�

Tr3(σ3,1 · σ3,1 · id1 ⊗ σ1,1 ⊗ id1 · ≺⊗�⊗ id1)

Figure 2: A hypergraph and its corresponding categorical term.

Theorem 35 (Soundness). For any morphisms f ,g ∈ TermΣ, if f = g under the equational theory of the
category, then their interpretations as labelled interfaced linear hypergraphs are isomorphic ~f � ≡ ~g�.

Proof. Composition produces well-formed interfaced linear hypergraphs (Proposition 16) and satisfies
the axioms of categories with the identity hypergraph idn : n → n as the unit of composition for
n. Monoidal tensor produces well-formed interfaced linear hypergraphs (Proposition 19), is a bifunctor
(Propositions 21 and 22) and satisfies the axioms of (strict) monoidal categories with the empty hyper-
graph 0 : 0 → 0 as the monoidal unit. The swap hypergraph is natural (Proposition 26) and satisfies the
axioms of symmetric monoidal categories. The trace operator produces well-formed interfaced linear hy-
pergraphs hypergraphs (Proposition 32) and satisfies the axioms of symmetric traced monoidal categories
specified in Section 2.

Remark 36. One may wonder if the axioms also hold arbitrary STMCs where the objects are not just natural
numbers. The answer is yes – the generalisation can be found in Section 9.

6 Completeness

We are also able to recover categorical terms in an STMC from labelled interfaced linear hypergraphs.
This is a two stage process: first we show that any well-formed labelled interfaced linear hypergraph has
at least one corresponding categorical term (definability); then we show that all of these terms are equal
in the category (coherence).

6.1 Definability

The strategy to retrieve a categorical term from a hypergraph is to exploit the formal graphical represen-
tation, in which all edges are ‘stacked’. From this representation we can read off a tensor of generators,
then connect wires of opposite polarities by linking them with trace and symmetries. An example is
shown in Figure 2.

Definition 37 (Definability). Labelled interfaced linear hypergraphs are definable if for every F ∈ LHyp•
Σ

, we
can retrieve a well-formed categorical equation for which the hypergraph interpretation of that term is equivalent
to the original graph, i.e. for a candidate 〈〈−〉〉 : HypTermΣ → TermΣ, then 〈〈F〉〉 ≡ F.

The first step is to fix a total order on the edges e1, · · · , en, including any identity edges. We fix this order
≤ globally. The stack operation creates a tensor of the corresponding generators in TermΣ for each edge
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v0
v1
v2

φ3

v3
v4
v5

=
v0
v1
v2

φ2

v3
v4
v5

κ−1(v3) = v1

=
v0
v1
v2 φ1

v3
v4
v5

=

κ−1(v4) = v2

v0
v1
v2

v3
v4
v5

κ−1(v5) = v0

Figure 3: Performing the shuffle algorithm, where φn denotes the shuffle construct for n vertices.

in the hypergraph. Identity edges are represented by identity morphisms id1 in the stack.

stack(−)Σ,≤ : HypTermΣ → TermΣ

stack(F)Σ,≤ =
⊗

e∈(EF+EF [id],≤)

φ where φ =

Λ(e) if e ∈ EF
id1 if e ∈ EF[id]

Most of the outputs from our stack of generators will need to connect to the inputs of other generators in
the stack, so we must trace them around. Then the only remaining step is to then connect the traced wires
to the corresponding inputs in the stack. Here it will be useful to consider the all the target and source
vertices as two totally ordered sets, respecting our new edge order ≤. We write S[≤], T [≤] for the ordered
set of all vertices which respects the original order on the vertices and the new order on the edges. Since
the interface is not contained within the order, we set input vertices to be the lowest elements of T [≤]
and the output vertices to be the greatest elements of S[≤]. For example, if we have sets S[e1] = {s1, s2},
S[e2] = {s3, s4, s5} and S[•] = {s6}, then if we define ≤ as e1 < e2, then S[≤] = {s1, s2, s3, s4, s5, s6}. To simplify
notation, we also introduce the notion of a connections permutation.

Definition 38 (Connections permutation). For an interfaced linear hypergraph H equipped with edge order
≤, where |S[≤]| = x, we call its connections permutation p : [x] → [x] the permutation such that every i < x,
κH (πi(T [≤])) = πp(i)(S[≤]).

Lemma 39 (Discrete composition). For any two discrete interfaced linear hypergraphs F : m → n and
G : n → k, with connections permutations p and q respectively, then the connections permutation of F ·G is
q ◦ p.

Proof. By definition of connections permutations, for each target t = πi(TF[•]), κF(t) = πp(i)(SF[•]), and
for each target t = πi(TG[•]), κG(t) = πq(i)(SG[•]). Since composition deletes the input vertices of G, we
are only concerned with the input vertices of F. By the first connections permutation, in F the ith input
vertex originally connected to the p(i)th output vertex, so by definition of composition, in F ·G it will
be connected to κG(πp(i)(TG[•])). By the second connections permutation this is equal to πq(p(i)(SG[•]).
Therefore the connections permutation of F ·G is q ◦ p.

We use this permutation to define a ‘shuffle’ construct comprised of symmetries and identities, defined
recursively over the set S[≤]. The target that connects to the lowest source is determined, and a symmetry
pulling this wire up to the ‘top’ is then defined: this wire is now in the correct position and is of no further
concern to us. We recursively perform shuffle on the remaining source and target vertices until none
remain, as demonstrated in Figure 3. Before proceeding, we show that the ‘input-output’ connectivity of
the shuffle construct reflects the connectivity of the original hypergraph.

Lemma 40 (Correctness of shuffle). For any interfaced linear hypergraph F with connections permutation p
and some v̄ : 0 → n ∈ TermΣ = v0 ⊗ v1 ⊗ · · · ⊗ vn−1, v̄ · shuffle(F)Σ,≤ = vp−1(0) ⊗ vp−1(1) ⊗ · · · ⊗ vp−1(n−1).

Proof. This is by induction on n. For n < 2 the statement is trivially correct. For n = 2, there are two cases:
{0 7→ 0,1 7→ 1} and {0 7→ 1,1 7→ 0}. By naturality of symmetry, v̄ ·σ2 is equal to v0⊗ (v1 ·φ1) = v0⊗v1 in the
former and v1 ⊗ (v0 · σ1) = v1 ⊗ v0, so for both cases the statement holds. For n > 2, v̄ ·φn = vx ⊗ (v0 ⊗ · · · .⊗
vx−1⊗vx+1⊗· · ·⊗vn−1 ·σn−1) where x = p−1(0) by naturality of symmetry. Therefore the first element of the
tensor is correct, and the remaining elements follow by inductive hypothesis.
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Function shuffle′
Σ,≤(S,T ,κ)

if |S | = 0 then
return id0;

end
s← π0(S); t← κ−1(s);
i← i where πi(T ) = t; j← |T | − i− 1;
f← σi,1 ⊗ j;
return f · id1 ⊗ shuffleΣ,≤(S- s, T - t,κ);

end
Function shuffleΣ,≤(F = (E,S,T ,κ,Λ))

shuffle′
Σ,≤(S[≤],T [≤],κ);

end
Algorithm 1: Defining the shuffle construct.

Since there is no input ‘box’, we also need to precompose the shuffle construct with another symmetry to
pull the input wires to the ‘top’ of the term. To retrieve a term from a hypergraph H with edge order ≤,
we simply trace the composition of the corresponding shuffle construct and edge stack.

Definition 41 (Definability functor). We define the definability functor as the identity-on-objects traced
monoidal functor 〈〈−〉〉Σ,≤ : HypTermΣ → TermΣ with its action defined for a given edge order ≤ and in-
terfaced linear hypergraph F : m → n with |S[≤]| as

〈〈F〉〉Σ,≤ = Trx−m(σx−m,m · shuffle(F)Σ,≤ · stack(F)Σ,≤ ⊗ idn)

To conclude definability we must be able to return to the original hypergraph. The shuffle construct is
our main obstacle to showing this, so we tackle it separately.

Lemma 42 (Definability of shuffle). For any shuffle construct φn : n → n, interpretation F = ~φn�, and
permutation p : [n] → [n] such that for some v̄ : 0 → n = v0⊗v1⊗· · ·⊗vn−1, v̄ ·φ = vp(0)⊗vp(1)⊗· · ·⊗vp(n−1),
then κ(πi(TF[•])) = πp(i)(SF[•]).

Proof. We first use staging and composite symmetry to arrange the shuffle construct into ‘slices’ contain-
ing exactly one symmetry σ1,1. We then perform induction of n. For n < 2 the statement holds trivially.
For n = 2 we examine the two cases {0 7→ 0,1 7→ 1} and {0 7→ 1,1 7→ 0} as in correctness of shuffle. They
correspond to the interfaced linear hypergraphs id2 and σ1,1 respectively. For both cases the statement
holds. For n > 2, we split the definition of σn into two parts: σ ′n = σx,1 ⊗ idn − 1 − x) where x = p−1(0),
and σ ′′n = id1 ⊗ σn−1. In ~σ ′n�, κ(πx(T [•])) = π0(S[•]) by definition of the swap hypergraph. In ~σ ′′n �,
κ(π0(T [•])) = π0(S[•]) by definition of identity and monoidal tensor. Therefore in ~σn�, κ(πi(T )) = π0(S)
by discrete composition. So for the first vertex in T the statement holds. For the remaining vertices we
apply the inductive hypothesis to φn−1 and add one to the indices of each vertex, since we tensor the
construct with an identity wire.

Finally we can take on the entire term.

Proposition 43 (Definability). For any interfaced linear hypergraph F : m → n equipped with edge order ≤,
where G = ~〈〈F〉〉Σ,≤�, then F ≡ G.

Proof. We map the sources and targets of edges in F to the corresponding vertices in ~〈〈F〉〉Σ,≤�. We do the
same for the edges. If there is an id1 in the stack of generators, we perform an expansion to introduce
an identity edge. The labelling condition is immediate, so we only need to consider the connections
condition. Using the edge order ≤, we consider the connections permutation of F and G, which we name
p and q respectively. If F ≡ G, then the two permutations must be the same.
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6 COMPLETENESS

We examine the permutation q. There are two classes of vertices to consider: those that are inputs and
those that are not. In the first case, the ith input (corresponding to πi(T [≤])) will connect to the p(i)th
source vertex by definability of shuffle, so q = p. In the second case, the ith target (which corresponds to
πi+m(T [≤])), will connect to the p(i +m)th source vertex by definition of trace, discrete composition and
definability of shuffle. So q = p in this case also. Therefore the connection permutations are equal, so
F ≡ G.

6.2 Coherence

We cannot immediately conclude completeness. There are multiple orders we can choose when stacking
the edges, resulting in multiple different shuffle constructs and recovered terms. For coherence these
recovered terms must all be equal by the equations of the STMC.

Definition 44 (Coherence). Interfaced linear hypergraphs are coherent if, for any well-formed interfaced linear
hypergraph F and any two orders on its edges ≤1, ≤2, 〈〈F〉〉Σ,≤1

= 〈〈F〉〉Σ,≤2
by the equations of the STMC.

Fortunately, we only need to consider switching two consecutive edges while retaining the others, e.g.
x < f < g < y becomes x < g < f < y. We can then swap any two edges in the set by propagating these
swaps throughout the entire set. To enable us to do this, we can combine a tensor of edge boxes into one
single box:

Lemma 45 (Combination). For any t =
⊗m

i=0 ai ⊗
⊗n

i=0 bi ⊗
⊗p

i=0 ci , we can rewrite it as a ⊗
⊗n

i=0 bi ⊗ c

where a : Σmi=0dom(ai) → Σmi=0 cod(ai) and c : Σ
p
i=0dom(ci) → Σ

p
i=0 cod(ci).

We need a lemma to show that we can transform the shuffle construct for a given order into one for a
different order by adding appropriate symmetries on either side, reflecting that the edge boxes have now
swapped over.

Lemma 46 (Coherence of shuffle). For any interfaced linear hypergraph F : m → n, two orders ≤1,≤2 on its
edges in which only two consecutive elements e1 : n′ → n and e2 : p′ → p have been swapped, and shuffle
constructs

shuffle(F)Σ,≤1
: m+ p+ q+ r + s → p′ + q′ + r ′ + s′ +n

shuffle(F)Σ,≤2
: m+ p+ r + q+ s → p′ + r ′ + q′ + s′ +n

then
shuffle(F)Σ,≤1

= idm ⊗ idp ⊗ σq,r ⊗ ids · shuffle(F)Σ,≤2
· idp′ ⊗ σr ′ ,q′ ⊗ ids′ ⊗ idn

shuffle≤1 = shuffle≤2

Proof. We show equality by asserting for every ‘input’ to the term, it always leads to the same ‘output’.
In the diagram below, each box represents a ‘bundle’ of wires. By correctness of shuffle (Lemma 40), we
know that the each shuffle construct respects the connections permutation of the H with order ≤1 and ≤2
respectively. Effectively, this means that it will shuffle the vertices into new bundles for each generator in
the stack, only differing by the swapped edges (labelled r ′ and q′ on the diagram below). We can therefore
use naturality of symmetry to to show both expressions are equal.

LHS

24



6 COMPLETENESS

m

p

q

r

s

shuffle≤1 =

p′

q′

r ′

s′

n

RHS

m

p

q

r

s

shuffle≤2 =

m

p

r

q

s

shuffle≤2

=

p′

r ′

q′

s′

n

=

p′

q′

r ′

s′

n

Lemma 47 (Coherence for two edges). For any interfaced linear hypergraph F : m → n and two orders
≤1,≤2 on its edges which differ only by the swapping of two consecutive elements, 〈〈H〉〉Σ,≤1

= 〈〈H〉〉Σ,≤2
.

Proof. Any term generated by 〈〈F〉〉Σ,≤ can be rewritten in the form

Tr|T |−m(σ|T |−m,m · shuffle(F)Σ,≤ · x⊗ f ⊗ g ⊗ y ⊗ idn)

by using combination (Lemma 45). So we have a term of the form:

shuffle≤1

x

f

g

y

By exchange:

shuffle≤1

x

f

g

y

By naturality of symmetry and functoriality:
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6 COMPLETENESS

shuffle≤1

x

g

f

y

By coherence of shuffle (Lemma 46):

shuffle≤2

x

g

f

y

We can then extend this lemma to obtain our final coherence result.

Proposition 48 (Coherence). For all orderings of edges ≤x on an interfaced linear hypergraph F,

〈〈F〉〉Σ,≤1
= 〈〈F〉〉Σ,≤2

= · · · = 〈〈F〉〉Σ,≤x

Proof. By repeatedly applying Lemma 47 until the desired order is obtained.

Since the edge order chosen is irrelevant, we are justified in dropping all subscripts from 〈〈−〉〉 and not
referring to ‘the chosen’ order. We can now conclude completeness.

Theorem 49 (Completeness I). For any interfaced linear hypergraph F ∈ LHyp•
Σ

there exists a unique mor-
phism f ∈ TermΣ, up to the equations of the STMC, such that ~f � =H .

Proof. By definability (Proposition 43) and coherence (Proposition 48).

We can also operate in the opposite direction and return to the original term after translating it into a
hypergraph. We first state a property of the definability functor.

Lemma 50 (Compositionality of definability). For any F,G ∈ LHyp•
Σ

and x ∈ N,

〈〈F ·G〉〉 = 〈〈F〉〉 · 〈〈G〉〉 〈〈F ⊗G〉〉 = 〈〈F〉〉 ⊗ 〈〈G〉〉 〈〈Trx(F)〉〉 = Trx(〈〈F〉〉)

Proof. By sliding and yanking.

Theorem 51 (Completeness II). For any morphism f ∈ TermΣ, 〈〈~f �〉〉 = f .

Proof. As f is freely generated, f = Trx(f0 · f1 · · ·fn−1) by staging and global trace, where each fi = idp ⊗
k ⊗ idq. Therefore ~f � = Trx(~f0� · ~f1� · · ·~fn−1�) by definition of the definability functor, and 〈〈~f �〉〉 =
Trx(〈〈f0〉〉 · 〈〈f1〉〉 · · · 〈〈n− 1〉〉) by Lemma 50. By sliding and yanking, each 〈〈~fi�〉〉 = fi , and by composition,
〈〈~f �〉〉 = f .

26



7 GRAPH REWRITING

7 Graph rewriting

For standard STMCs, reasoning diagrammatically using isomorphism of diagrams works well, as the
axioms are absorbed into the graphical notation. However, we often wish to add extra structure to our
categories, with associated axioms. To solve this problem in the language of terms we use term rewriting.

Definition 52 (Subterm). For any morphisms f ,g ∈ TermΣ, we say that g is a subterm of f if there exists
f̂1, f̂2 ∈ TermΣ and n,x ∈ N such that f = Trx(f̂1 · idn ⊗ g · f̂2), where f̂1, f̂2 do not contain any traces.

f = f̂1 g f̂2

Definition 53 (Term rewriting). A rewrite rule in TermΣ is a pair 〈l, r〉 where l, r : X → Y are terms in
TermΣ with the same domain and codomain. We write rules as 〈l, r〉 : X → Y . A rewriting system E is a set of
rewrite rules. We can perform a rewrite step in E for two terms g and h (written g⇒E h) if there exists rewriting
rule 〈l, r〉 ∈ E such that l is a subterm of g, i.e. we can write f in the form Trx(f̂1 · id⊗ l · f̂2) for some trace-free
terms f̂1 and f̂2.

g = f̂1 l
f̂2 ⇒R f̂1 r f̂2 = h

As is often the case in the algebraic realm, it can be difficult to identify the occurrence of l in f due to
functoriality. However, unlike with the axioms of STMCs, these extra axioms are not an intrinsic part of
our diagrams. We can no longer rely purely on hypergraph isomorphisms. Fortunately, we can generalise
term rewriting to graph rewriting. First we must formalise the notion of a subgraph of an interfaced linear
hypergraph.

Definition 54 (Subgraph). For any linear hypergraphs F,G ∈ LHyp•
Σ

, we say that G is a subgraph of F if there
exists an embedding monomorphism G→ F.

Intuitively, to transform some subgraph L into a larger graph G, we apply a sequence of operations.

Lemma 55. For any minimal F,G ∈ LHyp•
Σ

and x ∈ N, there exist monomorphisms F → F · G, F → G · F,
F→ F ⊗G, F→ G⊗F and F→ Trx(F).

Proof. This is immediate, as we simply embed the operand into the result.

Remark 56. Note that the use of homeomorphism in the definition of trace guarantees that we can define a
monomorphism F→ Trx(F). Had we used a naive definition that simply coalesced the input and output vertices,
the vertex map would not be injective.

Lemma 57. For any monomorphism m : F → G ∈ LHyp•
Σ

, there exist interfaced linear hypergraphs F1,F2
and n,x ∈ N such that m = Trx(−) ◦ (F2 · −) ◦ (− · F1) ◦ (idn ⊗ −).

Proof. Since composition, tensor and trace can all be represented as monomorphisms (Lemma 55), we
apply the sequence of operations that transforms F into G.

Lemma 58. For any morphisms f ,g ∈ TermΣ, g is a subterm of f if and only if ~g� is a subgraph of ~f �.

Proof. For (⇒) we assume that g is a subterm of f . Therefore we know that we can write f in the form
of Definition 52. By definition of ~−�, ~f � = Trx(~f̂1� · ~idn�⊗ ~g� · ~f̂2�). As we can express all operations
as monomorphisms (Lemma 55), there exists a monomorphism ~g�→ ~f �, namely Trx(−) ◦ (~f̂1� · −) ◦ (− ·
~f̂2�) ◦ (~idn�⊗−).
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7 GRAPH REWRITING

Figure 4: An example of DPO rewriting in HypΣ, using the axiom of naturality in a Cartesian category.

For (⇐) we assume that there exists an embedding monomorphism m : ~g� → ~f �. Therefore by
Lemma 57, there exists hypergraphs F1,F2 and n,x ∈ N such that m = Trx(−) ◦ (F2 · −) ◦ (− · F1) ◦ (idn ⊗−).
This means that ~f � = Trx(F2 · idn ⊗ ~g� ·F1). We apply the definability functor to both sides:

〈〈~f �〉〉 = f = 〈〈Trx(F2 · idn ⊗ ~g� ·F1)〉〉 Completeness II

= Trx(〈〈F2〉〉 · idn ⊗ 〈〈~g�〉〉 · 〈〈F1〉〉) Compositionality of definability

= Trx(〈〈F2〉〉 · idn ⊗ g · 〈〈F1〉〉) Completeness II

Therefore there exist f1 = 〈〈F1〉〉 and f2 = 〈〈F2〉〉 such that f = Trx(f1 · idn ⊗ g · f2), so g is a subterm of f .

7.1 DPO rewriting

A popular approach to graph rewriting is known as double pushout (DPO) rewriting [15], and we use an
extension of the traditional definition that introduces an ‘interface’ [6]. We start by recalling the definition
for ordinary hypergraphs in HypΣ.

Definition 59 (DPO). A DPO rewrite rule 〈L,R〉 ∈ HypΣ is a span L← K → R, where K is discrete. A DPO
system R is a set of DPO rules. We write G R H if there exists span L← K → R in R, discrete hypergraph J ,
and cospan K → C← J , such that the diagram below commutes, and the two squares are pushouts.

L K R

G C H

J

To perform rewrite rule 〈L,R〉 in some larger graph G, a matching
monomorphism L→ G must first be identified. Then its pushout comple-
ment K → C → G can be computed: C is effectively ‘G with L removed’.
Finally we compute the pushout C → H ← R, yielding the graph H : the
graph G with L replaced by R.

To perform rewrite rule 〈L,R〉 in some larger graph G, a matching
p : L → G must first be identified. Its pushout complement K → C→ G
and the pushout C → H ← R can then be computed, yielding us the
graphH : the graphGwith L replaced by R. An example of the procedure
can be seen in Figure 4.
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7 GRAPH REWRITING

7.2 Adhesive categories

Not all structures are compatible with DPO rewriting. For example,
the pushout complements may not be unique. This is essential, as it implies that for a given match-
ing monomorphism, there is a unique rewrite of the graph. A commonly used framework that en-
sures the DPO procedure is always well-defined is that of adhesive categories, introduced by Lack and
Sobociński [35]. The key property of these categories is that pushout complements are always unique
for rewrite rules where each leg of the span is a monomorphism, if such a complement exists. Addition-
ally, they also enjoy a local Church-Rosser theorem and a concurrency theorem. We have already met an
adhesive category:

Proposition 60. HypΣ is adhesive.

Proof. HypΣ is a slice category of a presheaf category, so is adhesive [35].

We need to build on this to reach our interfaced linear hypergraphs. Unfortunately our category of inter-
faced linear hypergraphs LHyp•

Σ
is not adhesive: pushout complements are not unique. This is because

we do not require that the interface orders are preserved by homomorphism, as illustrated below.

The left case would be the ‘natural’ choice: we are only concerned with the section of graph being rewrit-
ten, so everything else should be left untouched. A possible solution would be to enforce that interfaces
are preserved by homomorphism. This raises its own problems, as usually this interface flexibility is ad-
vantageous: for example, it allows us to model the operations of our hypergraphs (Lemma 55). A simpler
option is to translate simply translate our interfaced linear hypergraphs into HypΣ and perform rewriting
there. Since we are using DPO with interfaces, we know that the interfaces are preserved throughout the
rewriting procedure, and thus we can recover it at the end.

The first thing we must do is to remove the interfaces of our interfaced linear hypergraphs, so that we
have a regular (uninterfaced) linear hypergraph. We call this procedure trimming.

d−e
==⇒

Definition 61 (Trimming). For any interfaced linear hypergraph F, we can trim its interfaces with the functor
d−e : LHyp•

Σ
→ HypΣ, defined as dFe = (V ,EF ,λe.SF[e],λe.κ?F ◦ TF[e]), where V =

⋃
e∈E SF[e].

We also write dve for the image of a vertex v and dV e for the image of a set of vertices V under this functor.

Lemma 62. For any F ∈ LHyp•
Σ

, dFe is linear.

Proof. Since each SF[e] is disjoint, each vertex is only in the sources of one edge. Since each TF[e] is disjoint
and κF is bijective, each vertex is only in the targets of one edge. Therefore dFe is linear.

Of course, we cannot simply ‘forget’ the interfaces – we will need them to recover the orders after we
have performed rewriting. We can keep track of the interfaces using the J graph from the DPO diagram
in Definition 59.

io(−)
====⇒
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7 GRAPH REWRITING

Definition 63 (Interface). For any G : m → n ∈ LHyp•
Σ

, we write io(G) ∈ HypΣ for the discrete hypergraph
with m+n vertices.

Definition 64 (Interfacing). For any J,H ∈HypΣ, where J is discrete, we say that J interfaces H if there exists

• a partition VJ = Vα +Vω equipped with total orders on the two subsets
• a morphism m : J → H that is injective when restricted to the two subsets

such that

• for any v ∈ Vα, in(m(v)) = 0
• for any v ∈ Vω, out(m(v)) = 0

Furthermore, for any v ∈ VH not in the image of m, in(v),out(v) > 0.

We are now ready to formulate the notion of a rewrite rule in LHyp•
Σ

.

Definition 65 (Rewrite rule). For a pair of interfaced linear hypergraphs L,R : m → n ∈ LHyp•
Σ

, we represent
their corresponding rewrite rule in HypΣ as dLe ← io(L)→ dRe, with the monomorphisms p : io(L) → L and
q : io(L) → R defined such that for any vertex v ∈ io(L), there exists x ∈ N such that p(v) = dπx(TL[•])e and
q(v) = dπx(SL[•])e. We write this rewrite rule as d〈L,R〉e.

d−e d−e

For a rewriting system E, we write ~E� for the interpretation of its rewrite rules as spans of hypergraphs
as illustrated in 65.

Lemma 66. For any interfaced linear hypergraph G, io(G) interfaces dGe with the partitioning Vα = dTG[•]e,
Vω = dSG[•]e. For a rewrite span d〈L,R〉e, io(L) interfaces dLe and dRe with the partitioning Vα = dTL[•]e,
Vω = dSL[•]e.

Proof. For G and L this is immediate. For R, this follows as the left and right hand side of a rewrite rule
must have the same domain and codomain.

Once we have translated back into regular hypergraphs, we can perform rewriting as described above.
Once we have acquired a rewritten hypergraph, we must use the interface J to reconstruct an interfaced
linear hypergraph.

Proposition 67. For a rewrite span d〈L,R〉e ∈ dEe and linear hypergraph G, if there exists a matching L→ G,
and G dRe H , then H is linear.

Proof. Since dGe is linear, then C must also be linear by homomorphism, and R is linear by Lemma 62.

By the DPO diagram, we know that H is the pushout of C
p
←− K

q
−→ R, where K = Vα +Vω. For any v ∈ Vα,

in(q(v)) = 0 as K interfaces R and out(p(v)) = 0 as K interfaces L and C is the complement G−L. Therefore
in the pushout R

r−→ H
s←− for any v ∈ Vα, r(p(v)) = s(q(v)) will be the source of an edge from R and the

target of an edge from C, and only one each since R and C are linear. A similar argument follows for each
v ∈ Vω. Therefore H is linear.

Lemma 68. For a DPO diagram as illustrated in Definition 59 and rewrite rule d〈L,R〉e, if J interfaces G then
it also interfaces H .

Proof. As J interfaces G and there exists a morphism C → G, J must also interface C by homomorphism
condition: a morphism must preserve sources and targets so if a vertex is not a source or target in G,
it cannot be a source or target in C. The reasoning is then the same as Proposition 67: the pushout
hypergraph H only ‘fills the hole’, so it will not affect the interfaces. Therefore J interfaces H .
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7 GRAPH REWRITING

To retrieve an interfaced linear hypergraph from a regular one with interfacing morphism, we use the
reinterface functor b−c= : HypΣ ×HypΣ → LHyp•

Σ
.

→ b−c=
===⇒

Definition 69 (Reinterfacing). For any H,J ∈HypΣ and morphism p : J → H such that J interfaces H with
partition Vα +Vω, we can reinterface H with respect to J with the functor bHcJ : HypΣ → LHyp•

Σ
, defined as

bHcJ = (EH ,S ′ ,T ′ ,λsv .tv ,ΛH } where

S[e ∈ EH ]′ = {sv fresh in A |v ∈ sH (e)} S[•]′ = {sv fresh in A |v ∈ p?(Vω)}
T [e ∈ EH ]′ = {tv fresh in A |v ∈ tH (e)} T [•]′ = {tv fresh in A |v ∈ p?(Vα)}

Definition 70 (Rewriting). For two hypergraphs L,R ∈ LHyp•
Σ

and rewrite rule 〈L,R〉 ∈ R, we define the
corresponding rewrite rule d〈L,R〉e ∈ HypΣ as in Definition 65. For a morphism L → G ∈ LHyp•

Σ
such that

dLe → dGe is a matching, we perform the rewrite dGe dRe H ∈ HypΣ. The resulting hypergraph in LHyp•
Σ

is
bHcio(G).

We call a monomorphism L→ G ∈ LHyp•
Σ

an •-matching if the corresponding morphism dLe → dGe is a
matching, i.e. io(L)→ dLe → dGe has a pushout complement.

Theorem 71. For a rewrite rule 〈L,R〉 ∈ LHyp•
Σ

and •-matching L→ G, the procedure in Definition 70 yields
a unique interfaced linear hypergraph.

Proof. The DPO procedure yields us a unique hypergraph that is linear by Proposition 67. As io(G)
interfaces dGe, it also interfaces H by Lemma 68, so we can obtain a unique interfaced linear hypergraph
bHcio(G).

In general, although we know that pushout complements are unique in adhesive categories, we do not
actually have a guarantee that they exist for a given monomorphism L→ G. Usually some variety of the
no-dangling-hyperedge condition is used to identify the monomorphisms that allow for the definition of
pushout complements. However, in our case we actually can guarantee they exist!

Definition 72 (No-dangling-hyperedge condition). MorphismsK
p
−→ L

q
−→ G in HypΣ satisfy the no-dangling-

hyperedge condition if, for each hyperedge h not in the image of q, every source and target of h is either (i) not in
the image of q or (ii) in the image of q ◦ p.

Lemma 73. For any L,G ∈HypΣ, the morphisms io(L)
p
−→ dLe

q
−→ dGe always satisfy the no-dangling-hyperedge

condition.

Proof. Assume there is an edge e ∈ dGe that is not in the image of q, with a source vG = m(vL). Since
dLe is linear (Lemma 62), out(vL) = 0 by preservation of sources. By definition of io(L), any vertex with
out-degree 0 must be in the image of p, so vG is in the image of q ◦ p. The same follows for targets.

Theorem 74 (•-matchings). All monomorphisms in LHyp•
Σ

are •-matchings.

Proof. To form a pushout complement C we remove elements of dLe from dGe in the obvious way. This
is a well-formed linear hypergraph since io(L)→ dLe → dGe always satisfies the no-dangling-hyperedge
condition.

Now all that remains is to show that our notion of rewriting in the graph language is equivalent to that
in the term language.

Theorem 75. For a set of equations E in TermΣ, g⇒E h if and only if ~g� ~E� ~h�.

31



7 GRAPH REWRITING

Proof. For (⇒), assume that g⇒E h. By Definition 53 this means that there exists 〈l, r〉 ∈ R such that

g = f̂1 l
f̂2 ⇒R f̂1 r f̂2 = h

For the if direction, we use ~−� to translate the rewrite rule 〈l, r〉 into a rewrite rule in the language
of interfaced linear hypergraphs as described in Definition 65. Therefore there exists a span d~l�e ←
io(~l�)→ d~r�e. Since l is a subterm of f , L corresponds to a subgraph of ~g� by Lemma 58, so there exists
a monomorphism ~l� → ~g�. Any monomorphism ~l� → ~g� is an •-matching by Theorem 74 so the
pushout complement of io(~l�)→ d~l�e → d~g�e exists. We can use the same procedure for d~r�e and d~h�e
and assert that the pushout complement of io(~r�) → d~r�e → d~h�e also exists. We know that the two
pushout complements are CL = d~g�e − d~l�e and CR = d~h�e − d~r�e respectively. Since the only difference
between d~g�e and d~h�e is d~l�e and d~r�e by definition of rewrite rules, CL = CR. We name this pushout
complement C, and note that this implies that d~l�e → d~g�e ← C and d~r�e → d~h�e ← C are pushouts.
By Lemma 68, io(~g�) interfaces d~g�e and io(~h�) interfaces d~h�e, and as ~g� and ~h� have the same type,
io(~g�) ≡ io(~h�): we name this hypergraph J . We can conclude that there exist morphisms J → d~g�e,
J → C and J → d~h�e. Therefore the DPO diagram specified in Definition 59 exists, so G ~E� H .

For the only if direction, we assume that ~g�  ~E� ~h� for some rewrite rule 〈~l�,~r�〉. This means
there exists a DPO diagram with matchings d~l�e → d~g�e and d~r�e → d~h�e. Since every monomorphism
in LHyp•

Σ
corresponds to a matching in HypΣ by Theorem 74, this means there must exist monomor-

phisms ~l�→ ~g� and ~r�→ ~h�. Therefore by Lemma 58, l is a subterm of g and r is a subterm of h, so
g⇒E h.

The results of this section gives us a graph rewriting system for rules that are spans of monomorphisms,
i.e. those in which no vertices of the interface K are collapsed into one. This is since the pushout com-

plement is only uniquely defined for K
p
−→ dLe → dGe if p is mono. However, there are cases where rewrite

rules that are not spans of monomorphisms might be desirable, such as a rule introducing an edge to an
empty wire.

Since the left leg of the span is not a monomorphism, the pushout complement is not unique and therefore
multiple derivations can be performed for one matching. Even more crucially, one of the derivations
would be degenerate if translated back into an interfaced linear hypergraph: there is a situation where a
source connects to a source!

In [5] this phenomenon is permitted thanks to a compact closed structure in which wires can be directed
arbitrarily. However in our traced context we have a strict notion of source and target which cannot be
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d−e d−e

d−e

io(−)

b−c

Figure 5: An example of a DPO diagram using the Cartesian copy axiom.

altered. To solve this issue, we can use homeomorphism to perform an expansion on the left hand side
of the rule. This yields us a span of monomorphisms as desired and guarantees us a unique pushout
complement. Once we have completed our rewriting, we can perform any smoothings if necessary in
order to retrieve a minimal hypergraph.

8 Case study: digital circuits

The initial motivation for developing a graph rewriting system was for use as an operational semantics
for digital circuits. In this section we will detail how we can apply our framework for this purpose.

As detailed in §2.2.1, when a STMC is Cartesian, it admits a fixpoint operator, which we can use to
represent feedback. This is leads immediately to models of digital circuits. However, as we must now
consider terms up to the axioms of Cartesian categories in addition to the axioms of STMCs, equality is
no longer captured by graph isomorphism and we must use graph rewriting. In the hypergraph inter-
pretation the diagonal morphism and the unique morphism into the terminal object are represented as
edges, and the Cartesian axioms are expressed as graph rewrite rules.

Example 76. We wish to interpret the Cartesian axioms in TermΣ as graph rewrite rules in HypΣ. We start our
example by interpreting naturality of ∆1 as a span of monomorphisms⇒∆1

: L
m←− C n−→ R in HypΣ:

Terms such as Tr1(�⊗ f · σ1,1 ·∆1 ⊗ 1) (with � as defined in § 3) illustrate why the graph rewriting approach
is useful. The symmetry obscures the existence of the left hand side of⇒∆n

, so rewriting qua term requires the
expenditure of additional computation to identify the redex. In contrast, in the hypergraph representation the
rule is more easily identifiable as seen in Figure 5.
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We present digital circuits as morphisms in a free traced PROP, where the objects correspond to the
number of wires in a bus [19]. Morphisms are freely generated over a circuit signature containing values
v : 0 → 1, forming a lattice, gates k : m → 1, and ‘special morphisms’ for forking (≺ : 1 → 2), joining
(� : 2 → 1) and stubbing (∼ : 1 → 0) wires. We write v = v0 ⊗ · · · ⊗ vm. Gates and special morphisms
have associated axioms:

v · ≺ = v ⊗ v 0→ 2

v ⊗ v′ · � = v t v′ 0→ 1

v · ∼ = 0 0→ 0

v · k = v s.t. if vi ∈ v w v′i ∈ v′ then v · k w v′ · k 0→ 1

Additionally, we can use the special morphisms to define Cartesian copy and delete maps, along with a
dual notion of maps ∇n to join buses of arbitrary size. The outputs of circuits depend wholly on their
inputs, so a circuit will always give the same output for some given inputs. It follows that any circuits
with zero outputs are considered to be equal.

Delay is represented as a morphism δt : 1 → 1, parameterised over a time monoid t ∈ T. Since this
adds a temporal aspect to our circuits, we switch from values to waveforms, sequences of values over time.
The axioms of delay are:

δ · k = k · δ m→ 1

δ2 ⊗ v ⊗ v′ · ∇2 · k = ((δ2 · k)⊗ (v ⊗ v′ · k) · ∇1 2→ 1

⊥ · δ =⊥ 0→ 0

δ · ∼ = ∼ 0→ 0

Of most interest is the second axiom (Streaming), an interaction between gates and time which corre-
sponds to stream manipulation. Two copies of the gate k are used, one to handle the ‘head’ of the wave-
form and the other to handle the ‘tail’. Feedback is represented using the trace, so the fixpoint operator
can be used to ‘unfold’ the circuit.

We have already seen in Example 76 that term rewriting can be computationally awkward. Another
problem in the reduction of circuits is that some of the local traces can be unproductive due to infinite
unfolding. The key result in [19] is that a circuit can be converted to a graph and brought to a normal
form in which the reduction can be made efficient. A guarantee can be given for a circuit to be either
productive or, if unproductive, the lack of productivity can be efficiently detected.

9 Generalisation

So far, we have considered only terms in PROPs, where objects are natural numbers and tensor product
is addition. This corresponds especially well with the notion of a linear hypergraph with m inputs and
n outputs corresponding to a morphism m → n. However, we may also wish to represent categories
with arbitrary objects, as we do with string diagrams. It is not difficult to generalise our hypergraphs to
correspond to terms in any STMC with set of objects C and morphisms freely generated over signature Σ.
We fix this STMC here as TermΣ,C.

Rather than just thinking of the type of linear hypergraphs as m→ n, we could instead decompose
them into the form 1⊗1⊗· · ·⊗1→ 1⊗1⊗· · ·⊗1, since tensor product is addition. In fact, this corresponds
even more closely to our graphical notation, as each of the ‘wires’ in the graph represents the natural
number 1. However, when we write the types this way, we see that there is no reason to restrict ourselves
to just numbers. The wires can instead correspond to arbitrary objects, as in string diagrams. We can
communicate this idea in our hypergraphs by labelling vertices as well as edges. These labels correspond
to the objects in our category.
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We extend hypergraph signatures with this vertex label set C to create a generalised hypergraph signa-
ture. Since the inputs and outputs of boxes are tensors of objects rather than natural numbers, edge labels
now have associated domains and codomains of elements of the free monoid under ⊗ on C rather than
arities and coarities of natural numbers. We introduce the vertex labelling operations ΛT : T → C? and
ΛS : S → C? and the following conditions:

• For all e ∈ E, ΛS(S[e]) = dom(Λ(e))

• For all e ∈ E, ΛT (T [e]) = cod(Λ(e))

• For all t ∈ T and s ∈ S, (ΛT ◦κ)(t) = ΛS(s)

Example 77 (Generalised interfaced linear hypergraph). Below is an example of a generalised interfaced
linear hypergraph of type A→D, for a generalised signature

(Σ,C) = ({≺ : C → B⊗D, � : B⊗A → C}, {A,B,C}).

The corresponding term is TrC(≺⊗ idA · idB ⊗ σD,A · �⊗ idD ).

Generalised interfaced linear hypergraph homomorphisms are as with interfaced linear hypergraphs but
with the addition of vertex label conditions.

SF C

SG C

ΛS
F

hS id

ΛS
G

TF C

TG C

ΛT
F

hT id

ΛT
G

As before, generalised interfaced linear hypergraphs over the signature (Σ,C) are the objects in the cate-
gory LHyp•

Σ,C, with generalised interfaced linear hypergraph homomorphisms as the morphisms between
them. Operations on generalised hypergraphs are defined similarly to before but with the addition of ver-
tex labels, which are affected in the same way as edge labels. Therefore, we can also form a category where
the generalised linear hypergraphs are morphisms:

Definition 78 (Generalised category of hypergraphs). Generalised interfaced linear hypergraphs over the
signature (Σ,C) form a symmetric traced monoidal category HypTermΣ,C with objects the elements of C? , ele-
ments of HypTermΣ,C(M,N ) as the generalised hypergraphs of type M→N , unit of composition as the identity
hypergraph, monoidal tensor as ⊗ as the empty hypergraph, symmetry on M and N as σM,N , and trace on X as

TrX(−) : HypTermΣ,C(X ⊗ M,X ⊗ N ) → HypTermΣ,C(M,N ).

We define the operations

~−�Σ,C : TermΣ,C → HypTermΣ,C

〈〈−〉〉Σ,C,≤ : HypTermΣ,C → TermΣ,C

in a similar manner to before. Soundness and completeness translate smoothly into the generalised case.

Theorem 79 (Generalised soundness). For any morphisms f ,g ∈ TermΣ,C if f = g under the equational theory
of the category then their interpretations as morphisms are isomorphic, ~f �Σ,C ≡ ~g�Σ,C.

Theorem 80 (Generalised completeness). For any generalised interfaced linear hypergraph F ∈ HypTermΣ,C
there exists a unique morphism f ∈ TermΣ,C, up to the equations of the STMC, such that ~f �Σ,C = F. Further-
more, for any morphism f ∈ TermΣ,C, 〈〈~(�f )〉〉 = f .

35



10 RELATED AND FURTHER WORK

10 Related and further work

10.1 Related work

Diagrammatic languages for traced categories are certainly not new: their formal presentation as string
diagrams has existed since the 90s [27, 28]. A soundness and completeness theorem for this language,
while common knowledge for many years but often omitted or only proved for certain signatures [39],
was finally formally proved in [31]. Combinatorial languages predate even this, having existed since at
least the 80s in the guise of flowchart schemes [42, 10, 11]. This type of diagrams have also been used to
show the completeness of finite dimensional vector spaces [24], and when equipped with a dagger, Hilbert
spaces [40]. However, it was not shown whether these diagrams were also suitable for graph rewriting in
the presence of Cartesian structure, which is essential for our goal of obtaining an operational semantics
of digital circuits.

Graphical languages for traced categories have seen many applications, such as to illustrate cyclic
lambda calculi [21], or to reason graphically about programs [38]. But we are not just concerned with
diagrammatic languages as a standalone concept: we are interested in the context of performing graph
rewriting with them in order to reason with additional axioms. This has been studied in the context sym-
metric traced categories before, most notably with open graphs [14], which were developed into framed
point graphs [30], and hypergraphs [5, 44, 7, 8]. As we have already established, these approaches were
unsuitable in the context of digital circuits, due to the use of a compact closed or Frobenius structure.
However, our work uses some of the building blocks from these frameworks, such as the use of homeo-
morphism and rewriting using hypergraphs.

Unlike the explicit interfaces in our framework, the hypergraphs in the existing framework are de-
fined via a cospan structure. Cospans are used in categorical representations of open networks [17, 1],
with each leg of the cospan representing inputs and outputs respectively. This is natural in the presence
of a Frobenius monoid which allows vertices to be identified arbitrarily. A similar recipe could have been
followed here by requiring the morphisms of the cospan to be injective, which would have simplified
some of the proofs. However, we considered a more elementary presentation in which one can arrive
at the desired technical result without relying on avoidable mathematical concepts, which may make it
more accessible to a wider audience. Regardless, it should be easy to see how to encode an interfaced
linear hypergraph H : m → n as a cospan of regular hypergraphs m→ dHe ← n.

10.2 Further work

In this paper we have revisited and solidified the mathematical foundation upon which the graphical
language for digital circuits of [19] is based. This graphical language opens up numerous avenues, such
as additional opportunities for partial evaluation or allowing us to reason with circuits not handled well
by traditional methods, such as cyclic combinational circuits [36].

A potential next step is to refine the existing categorical semantics of digital circuits and identify
any missing axioms. Indeed, for us to have a complete diagrammatic semantics the underlying categor-
ical framework must of course also be complete! Instantiating the categorical semantics to a concrete
category [20] pointed towards such additional axioms, most notably regarding unproductive circuits, as
mentioned in the case study. By identifying these axioms we can present our diagrammatic semantics as
a complete package for reasoning about digital circuits.

Another natural future avenue is that of automating the graph rewrites. While it may be simple to
identify potential redexes by eye in small systems, in practice there may be many and the derivation
procedure would be long and tedious. Automating rewrites presents some additional issues, such as the
task of choosing between different rewrites. We can take the global trace-delay form of [20] and verify in
our formal framework that we do in fact have confluence for our operational semantics.

Our firm, mathematically sound graphical foundation also opens up the opportunity for the devel-
opment of circuit design tools, following in the footsteps of tools like such as Quantomatic [33], Homo-
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topy.io [25] or Cartographer [41], with the aim of bringing the reduction-based operational semantics
into a field dominated by simulation. Our approach serves to contrast and complement, not replace, the
existing paradigm, and offer an alternative insight into the design and evaluation of digital circuits.
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A Axioms of STMCs

A.1 Left identity of composition

For any interfaced linear hypergraph F : m → n, idm ·F ≡ F.

Definitions

H = idm ·F
EH = EF SH [•] = SF[•] SH [e ∈ EF] = SF[e] TH [•] = [m] TH [e ∈ EF] = TF[e] ΛH = ΛF

κH (t) =

κF(πi(TF[•])) if v = πi([m])

κF(t) otherwise
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Equivalence maps

hS(v) = v hT (v) =

πi(TF[•]) if v = πi([m])

v otherwise
hE(e) = e

A.2 Right identity of composition

For any interfaced linear hypergraph F : m → n, F · idm ≡ F.

Definitions

H = F · idn
EH = EF SH [•] = [m] SH [e ∈ EF] = SF[e] TH [•] = TF[•] TH [e ∈ EF] = TF[e] ΛH = ΛF

κH (v) =

πi([n]) if κF(v) = πi(SF[•])
κF otherwise

Equivalence maps

hS(v) = v hS(v) =

πi([n]) if v = πi(S[•])
v otherwise

hE(e) = e

A.3 Associativity of composition

For any interfaced linear hypergraphs F : m → n, G : n → p and H : p → q, (F ·G) ·H ≡ F · (G ·H).

Definitions

K = (F ·G) ·H
EK = EF +EG +EH ΛK = ΛF +ΛG +ΛH

SK = SF − SF[•] + SG − SG[•] + SH TK = TF + TG − TG[•] + TH − TH [•]

κK (v) =


κH (πj(SH [•]) if κF(v) = πi(SF[•])∧κG(πi(TG[•])) = πj(SG[•])
κH (πi(SH [•])) if κG(v) = πi(SG[•])
κG(πi(SG[•])) if κF(v) = πi(SF[•])
κF +κG +κH otherwise

The definition of L = F · (G ·H) is identical.
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Equivalence maps

hS = id hT = id hE = id

A.4 Left identity of tensor

For any interfaced linear hypergraph F : m → n, id0 ⊗F ≡ F.

Definitions

H = id0 ⊗F
EH = EF SH = F TH = F κH = κF ΛH = ΛF

Equivalence maps

hS = id hT = id hE = id

A.5 Right identity of tensor

For any interfaced linear hypergraph F : m → n, F ⊗ id0 ≡ F.

Definitions

H = F ⊗ id0

EH = EF SH = F TH = F κH = κF ΛH = ΛF

Equivalence maps

hS = id hT = id hE = id

A.6 Associativity of tensor

For any interfaced linear hypergraphs F : m → n, G : p → q and H : r → s, F ⊗ (G⊗H) ≡ (F ⊗G)⊗H .
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Definitions

K = F ⊗ (G⊗H)

EK = EF +EG +EH ΛH = ΛF +ΛG +ΛH

SK [e ∈ EF] = SF[e] SK [e ∈ EG] = SG[e] SK [e ∈ EH ] = SH [e] SK [•] = SF[•] + SG[•] + SH [•]
TK [e ∈ EF] = TF[e] TK [e ∈ EG] = TG[e] TK [e ∈ EH ] = TH [e] TK [•] = TF[•] + TG[•] + TH [•]

The definition of L = (F ⊗G)⊗H is identical.

Equivalence maps

hS = id hT = id hE = id

A.7 Bifunctoriality of tensor I (Proposition 21)

For any m,n ∈ N, idm ⊗ idn ≡ idm+n

Definitions

H = idm ⊗ idn
EH = ∅ ΛH = ∅ SH [•] = [m] + [n] TH [•] = [m] + [n] κ(πi(TH [•])) = πi(SH [•])

L = idm+n

EH = ∅ ΛH = ∅ SH [•] = [m+n] TH [•] = [m+n] κ(πi(TH [•])) = πi(SH [•])

Equivalence maps

hS(s) =

πi([m+n]) if s = πi([m])

πi+m([m+n]) if s = πi[n]
hT (t) =

πi([m+n]) if t = πi([m])

πi+m([m+n]) if t = πi[n]
hE = ∅
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A.8 Bifunctoriality of tensor II (Proposition 22)

For any interfaced linear hypergraphs F : m → n, G : r → s, H : n → p and K : s → t,
F ⊗G ·H ⊗K ≡ (F ·H)⊗ (G ·K).

Definitions

L = F ⊗G ·H ⊗K
EL = EF +EG +EH +EK ΛL = ΛF +ΛG +ΛH +ΛL

SL[•] = SH [•] + SL[•] SL[e ∈ EF] = SF[e] SL[e ∈ EG] = SG[e] SL[e ∈ EH ] = SH [e] SL[e ∈ EK ] = SK [e]

TL[•] = TF[•] + TG[•] TL[e ∈ EF] = TF[e] TL[e ∈ EG] = TG[e] TL[e ∈ EH ] = TH [e] TL[e ∈ EK ] = TK [e]

κ(t) =


κ(πi(TH [•])) if κF(t) = πi(SF[•])
κ(πi(TK [•])) if κG(t) = πi(SG[•])
(κF +κG +κH +κK )(t) otherwise

The definition of A = (F ·H)⊗ (G⊗K) is identical.

Equivalence maps

hS = id hT = id hE = id

A.9 Naturality of swap (Proposition 26)

For any interfaced linear hypergraphs F : m → n and G : p → q, F ⊗G · σn,q ≡ σm,p ·G⊗F.

Definition

We use the ‘alternate’ representation of the swap hypergraph defined in Lemma 25.

43



A AXIOMS OF STMCS

H = F ⊗G · σn,q
EH = EF +EG SH [•] = [n] + [q] SH [e ∈ EF] = SF[e] SH [e ∈ EG] = SG[e]

ΛH = ΛF +ΛG TH [•] = TF[•] TH [e ∈ EF] = TF[e] TH [e ∈ EG] = TG[e]

κH (t) =


πi([n]) if κF(t) = πi(SF[•])
πi([q]) if κG(t) = πi(SG[•])
(κF +κG)(t) otherwise

K = σm,p ·F ⊗G
EH = EF +EG SH [•] = SF[•] SH [e ∈ EF] = SF[e] SH [e ∈ EG] = SG[e]

ΛH = ΛF +ΛG TH [•] = [m] + [p] TH [e ∈ EF] = TF[e] TH [e ∈ EG] = TG[e]

κH (t) =


κF(πi(TF[•]) if t = πi([m])

κG(πi(TG[•]) if t = πi([p])

(κF +κG)(t) otherwise

Equivalence maps

hS(s) =


πi(SF[•]) if s = πi([m])

πi(SG[•]) if s = πi([p])

s otherwise

hT (t) =


πi([m]) if s = πi(TF[•])
πi([p]) if s = πi(TG[•])
t otherwise

hE = id

A.10 Hexagon axiom

For any m,n,p ∈ N, σm,n ⊗ idp · idn ⊗ σm,p ≡ σm,n+p.

Definitions

H = σm,n ⊗ idp · idn ⊗ σm,p
EH = ∅ ΛH = ∅ SH [•] = [n]s + [p]s + [m]s TH [•] = [m]t + [n]t + [p]t
κH (πi([m]t) = πi([m]s) κH (πi([n]t) = πi([n]s) κH (πi([p]t) = πi([p]s)

K = σm,n+p

EK = ∅ ΛK = ∅ SK [•] = [n+ p]s + [m]s TK [•] = [m]t + [n+ p]t
κK (πi([m]t)) = πi([m]s) κK (πi([n+ p]t)) = πi([n+ p]s)

Equivalence maps

hS(v) =


πi([n+ p]s) if v = πi([n]s)

πi+n([n+ p]s) if v = πi([p]s)

πi([m]s) if v = πi([m]s)

hT (v) =


πi([n+ p]t) if v = πi([n]t)

πi+n([n+ p]t) if v = πi([p]t)

πi([m]t) if v = πi([m]t)

hE = ∅
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A.11 Self-invertability

For any m,n ∈ N, σm,n · σn,m ≡ idm+n.

Definitions

H = σm,n · σn,m
EH = ∅ ΛH = ∅ SH [•] = [m]s + [n]s TH [•] = [m]t + [n]t

κH (πi([m]t)) = πi([m]s) κH (πi([n]t)) = πi([n]s)

The definition of idm+n is identical.

Equivalence maps

hS = id hT = id =E∅

A.12 Tightening

For any interfaced linear hypergraphs F : x+m → x+n, G : p → m and H : n → q,

Trx(idx ⊗G ·F · idx ⊗H) ≡ G ·Trx(F) ·H.

This proof is by induction on x.

Zero case: x = 0

Tr0(id0 ⊗G ·F · id0 ⊗H) ≡ G ·Tr0(F) ·H

Tr0(id0 ⊗G ·F · id0 ⊗H) ≡ id0 ⊗G ·F · id0 ⊗H definition of trace

≡ G ·F · id0 ⊗H left identity of tensor

≡ G ·F ·H left identity of tensor

≡ G ·Tr0(F) ·H definition of trace

Base case: x = 1

Tr1(id1 ⊗G ·F · id1 ⊗H) ≡ G ·Tr1(F) ·H
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Definitions

K = Tr1(id1 ⊗G ·F · id1 ⊗H)

EK = EF +EG +EH E[id] = {eid} ΛK = ΛF +ΛG +ΛH

SK [•] = SG[•] SK [eid] = [1]s SK [e ∈ EF] = SF[e] SK [e ∈ EG] = SG[e] SK [e ∈ EH ] = SH [e]

TK [•] = TH [•] TK [eid] = [1]t TK [e ∈ EF] = TF[e] TK [e ∈ EG] = TG[e] TK [e ∈ EH ] = TH [e]

κK (t) =



κH (πi−1(TH [•])) if t = π0([1]t)∧κF(π0(TF[•])) = πi(SF[•])
κF(π0(TF[•])) if t = π0([1]t)

π0([1]s) if κF(t) = π0(SF[•])
κH (πi−1(TH [•])) if κF(t) = πi(SF[•])
π0([1]s) if κG(t) = πi(SG[•])∧κF(πi(TF[•])) = π0(SF[•])
κF(πi+1(TF[•])) if κG(t) = πi(SG[•])
(κF +κG +κH )(v) otherwise

L = G ·Tr1(F) ·H
EL = EF +EG +EH E[id] = {eid} ΛL = ΛF +ΛG +ΛH

SL[•] = SG[•] SL[eid] = {π0(SF[•])} SL[e ∈ EF] = SF[e] SL[e ∈ EG] = SG[e] SL[e ∈ EH ] = SH [e]

TL[•] = TH [•] TK [eid] = {π0(TF[•])} TL[e ∈ EF] = TF[e] TL[e ∈ EG] = TG[e] TL[e ∈ EH ] = TH [e]

κL(t) =


κH (πi−1(TH [•])) if κF(t) = πi(SF[•])
κF(πi+1(TF[•])) if κG(t) = πi(SG[•])
(κF +κG +κH )(v) otherwise

Equivalence maps

hS(v) =

π0(SF[•]) if v = π0([1]s)

v otherwise
hT =

π0(TF[•]) if v = π0([1]t)

v otherwise
hE = id

Inductive case: x = k + 1 for k > 1

Trk+1(idk+1 ⊗G ·F · idk+1 ⊗H) ≡ G ·Trk+1(F) ·H

Trk+1(idk + 1⊗G ·F · idk + 1⊗H) ≡ Tr1(Trk(idk + 1⊗G ·F · idk + 1⊗H)) definition of trace

≡ Tr1(Trk(k ⊗ id1 ⊗G ·F · k ⊗ id1 ⊗H)) bif of tensor I

≡ Tr1(id1 ⊗G ·Trk(F) · id1 ⊗H) IH (1)

≡ G ·Tr1(Trk(F)) ·H base case (2)

≡ G ·Trk+1(F) ·H definition of trace

At (1), we use our inductive hypothesis with m = 1 +m and n = 1 + n, since it applies for any m,n ∈ N. At
(2), we can use our base case since Trk(F) has type 1 +m→ 1 +n.

A.13 Superposing

For any interfaced linear hypergraph F : x+m → x+n and n ∈ N,

Trx(F ⊗ idn) ≡ Trx(F)⊗ idn.
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This proof is by induction on x.

Zero case: x = 0

Tr0(F ⊗ idn) ≡ Tr0(F)⊗ idn
This follows immediately by definition of trace.

Base case: x = 1

Tr1(F ⊗ idn) ≡ Tr1(F)⊗ idn

Definitions

H = Trx(F ⊗G)

EH = EF +EG EH [id] = {eid} ΛH = ΛF +ΛG

SH [•] = SF[•]−π0(SF[•]) + [n]s S[eid] = π0(SF[•]) SH [e ∈ EF] = SF[e]

TH [•] = TF[•]−π0(TF[•]) + [n]t T [eid] = π0(TF[•]) TH [e ∈ EF] = TF[e]

κH (t) =

πi([n]s) if t = πi([n]t)

κF(t) otherwise

The definition of L = Trx(F)⊗G is identical.

Equivalence maps

hS = id hT = id hE = id

Inductive case: x = k + 1 for k > 1

Trk+1(F ⊗G) ≡ Trk+1(F)⊗G

Trk+1(F ⊗G) ≡ Tr1(Trk(F ⊗G)) definition of trace

≡ Tr1(Trk(F)⊗G) IH (1)

≡ Tr1(Trk(F))⊗G base case (2)

≡ Trk+1(F)⊗G definition of trace

At (1), Tr1(F) : k +m → k + n so we can apply our inductive hypothesis. At (2), we observe that as
F : k + 1 +m → k + 1 + n then Trk(F)1 +m1 +n, so we can use our base case. Therefore Trk+1(F ⊗G) =
Trk+1(F)⊗G. Therefore for any x ∈ N, Trx(F ⊗G) = Trx(F)⊗G.

A.14 Yanking

For any x ∈ N, Trx(σx,x) ≡ idx.

This proof is by induction on x.
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Zero case: x = 0

Tr0(σ0,0) ≡ id0

This follows immediately by definition of trace and symmetry.

Base case: x = 1

Tr1(σ1,1) ≡ id1

Definitions

H = Tr1(σ1,1)

EH = ∅ EH [id] = {eid} ΛH = ∅
SH [•] = [1]s1 SH [eid] = [1]s2 TH [•] = [1]t1 TH [eid] = [1]t2

κH (π0([1]t1) = π0([1]s2) κH (π0([1]t2) = π0([1]s1)

By performing a smoothing we obtain the following:

L = smooth(Tr1(σ1,1))

EL = ∅ EL[id] = ∅ ΛL = ∅
SL[•] = [1]s1 TL[•] = [1]t1 κL(π0([1]t1) = π0([1]s1)

Equivalence maps

hS = id hT = id hE = id

Inductive case: x = k + 1 for k > 1

Trk+1(σk+1,k+1) ≡ idk + 1

The inductive case begins by manipulating Trk+1(σk+1,k+1) into a form with traces of only one wire.

Trk+1(σk+1,k+1) ≡ Trk+1(k ⊗ σ1,n ⊗ 1 · σk,k ⊗ σ1,1 · k ⊗ σk,1 ⊗ 1) inductive swap

≡ Tr1(Trk(k ⊗ σ1,k ⊗ 1 · σk,k ⊗ σ1,1 · k ⊗ σk,1 ⊗ 1)) definition of trace

≡ Tr1(σ1,k ⊗ 1 ·Trk(σk,k ⊗ σ1,1) · σk,1 ⊗ 1) tightening

≡ Tr1(σ1,k ⊗ 1 ·Trk(σk,k)⊗ σ1,1 · σk,1 ⊗ 1) superposing

≡ Tr1(σ1,k ⊗ 1 · k ⊗ σ1,1 · σk,1 ⊗ 1) IH

Definitions

H = Tr1(σ1,k ⊗ 1 · k ⊗ σ1,1 · σk,1 ⊗ 1)

EH = ∅ EH [id] = {eid}Λ = ∅
SH [•] = [k]s + [1]s1 SH [eid] = [1]s2 TH [•] = [k]t + [1]t1 TH [eid] = [1]t2

κ(t) =


π0([1]s2) if t = π0([1]t1)

π0([1]s1) if t = π0([1]t2)

πi([k]s) if t = πi([k]t)
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By performing a smoothing we obtain the following:

L = smooth(Tr1(σ1,k ⊗ 1 · k ⊗ σ1,1 · σk,1 ⊗ 1))

EL = ∅ EL[id] = ∅Λ = ∅

SL[•] = [k]s + [1]s1 TL[•] = [k]t + [1]t1 κ(t) =

π0([1]s1) if t = π0([1]s1)

πi([k]s) if t = πi([k]t)

Equivalence maps

hS = id hT = id hE = id

A.15 Exchange

For any interfaced linear hypergraph F : x+ y +m → x+ y +n,

Try(Trx(F)) ≡ Trx(Try(σy,x ⊗ idm ·F · σx,y ⊗ idn)).

This proof is by induction on x and y.

Zero case I: x = 0, y = k

Trk(Tr0(F)) ≡ Tr0(Trk(σk,0 ⊗ idm ·F · σ0,k ⊗ idn))

Trk(Tr0(F)) ≡ Trk(F) definition of trace

≡ Tr0(Trk(F)) definition of trace

≡ Tr0(Trk(idk+m ·F · idk+n)) left/right identity

≡ Tr0(Trk(idk ⊗ idm ·F · idk ⊗ idn)) bifunctoriality I

≡ Tr0(Trk(σk,0 ⊗ idm ·F · σ0,k ⊗ idn)) definition of swap

Zero case II: x = k, y = 0

Tr0(Trk(F)) ≡ Trk(Tr0(σ0,k ⊗ idm ·F · σk,0 ⊗ idn))

Tr0(Trk(F)) ≡ Tr0(Trk(idk+m ·F · idk+n)) left/right identity

≡ Tr0(Trk(idk ⊗ idm ·F · idk ⊗ idn)) bifunctoriality I

≡ Tr0(Trk(σ0,k ⊗ idm ·F · σk,0 ⊗ idn)) definition of swap

≡ Trk(idk ⊗ idm ·F · idk ⊗ idn) definition of trace

≡ Trk(Tr0(idk ⊗ idm ·F · idk ⊗ idn)) definition of trace

Base case: x = 1, y = 1

Tr1(Tr1(F)) ≡ Tr1(Tr1(σ1,1 ⊗ idm ·F · σ1,1 ⊗ idn))
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Definitions

H = Tr1(Tr1(F))

EH = EF EH [id] = {eid0, eid1} ΛH = ΛF κH = κF
SH [•] = SF[•]− (π0(SF[•]) +π1(SF[•])) SH [e ∈ EF] = SF[e] S[eid0] = {π0(SF[•])} S[eid1] = {π1(SF[•])}
TH [•] = TF[•]− (π0(TF[•]) +π1(TF[•])) TH [e ∈ EF] = TF[e] T [eid0] = {π0(TF[•])} T [eid1] = {π1(TF[•])}

L = Tr1(Tr1(σ1,1 ⊗ idm ·F · σ1,1 ⊗ idn))

EL = EF EH [id] = {eid0, eid1} ΛH = ΛF

SH [•] = [n] SH [e ∈ EF] = SF[e] S[eid0] = [1]s0 S[eid1] = [1]s1
TH [•] = [m] TH [e ∈ EF] = TF[e] T [eid0] = [1]t0 S[eid1] = [1]t1

κH (t) =



κF(π1(TF[•])) if t = [1]t0
κF(π0(TF[•])) if t = [1]t1
κF(πi+2(TF[•])) if t = πi([m])

π0([1]s1) if κF(t) = π0(SF[•])
π0([1]s0) if κF(t) = π1(SF[•])
πi−2([n]) if κF(t) = πi(SF[•])
κF(t) otherwise

Equivalence maps

hS(v) =


π0([1]s0) if v = π0(SF[•])
π0([1]s1) if v = π1(SF[•])
πi−2([n]) if v = πi(SF[•])
v otherwise

hT (v) =


π0([1]t0) if v = π0(TF[•])
π0([1]t1) if v = π1(TF[•])
πi−2([n]) if v = πi(TF[•])
v otherwise

hE = id

Inductive case I: x = k + 1, y = 1

Tr1(Trk+1(F)) ≡ Trk+1(Tr1(σ1,k+1 ⊗ idm · σk+1,1 ⊗ idm))
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Tr1(Trk+1(F)) ≡ Tr1(Tr1(Trk(F)))

definition of trace

≡ Tr1(Tr1(σ1,1 ⊗ idm ·Trk(F) · σ1,1 ⊗ idn))

base case

≡ Tr1(Tr1(Trk(idk ⊗ σ1,1 ⊗ idm ·F · idk ⊗ σ1,1 ⊗ idn)))

tightening

≡ Tr1(Trk(Tr1(σ1,k ⊗ id1 ⊗ idm · idk ⊗ σ1,1 ⊗ idm ·F · idk ⊗ σ1,1 ⊗ idn · σk,1 ⊗ id1 ⊗ idn)))

IH

≡ Trk+1(Tr1(σ1,k ⊗ id1 ⊗ idm · idk ⊗ σ1,1 ⊗ idm ·F · idk ⊗ σ1,1 ⊗ idn · σk,1 ⊗ id1 ⊗ idn))

definition of trace

≡ Trk+1(Tr1((σ1,k ⊗ id1 · idk ⊗ σ1,1)⊗ idm ·F · (idk ⊗ σ1,1 · σk,1 ⊗ id1)⊗ idn))

bifunctoriality II

≡ Trk+1(Tr1(σ1,k+1 ⊗ idm ·F · σk+1,1 ⊗ idn))

definition of swap

Inductive case II: x = 1, y = k′ + 1

Trk
′+1(Tr1(F)) ≡ Tr1(Trk

′+1(σk′+1,1 ⊗ idm ·F · σ1,k′+1 ⊗ idn))

Trk
′+1(Tr1(F)) ≡ Tr1(Trk

′
(Tr1(F)))

definition of trace

≡ Tr1(Tr1(Trk
′
(σk′ ,1 ⊗ id1 ⊗ idm ·F · σ1,k′ ⊗ id1 ⊗ idn)))

IH

≡ Tr1(Tr1(σ1,1 ⊗ idm ·Trk
′
(σk′ ,1 ⊗ id1 ⊗ idm ·F · σ1,k′ ⊗ id1 ⊗ idn) · σ1,1 ⊗ idn))

Base case

≡ Tr1(Tr1(Trk
′
(id′k ⊗ σ1,1 ⊗ idm · σk′ ,1 ⊗ id1 ⊗ idm ·F · σ1,k′ ⊗ id1 ⊗ idn · id′k ⊗ σ1,1 ⊗ idn)))

tightening

≡ Tr1(Tr1(Trk
′
((id′k ⊗ σ1,1 · σk′ ,1 ⊗ id1)⊗ idm ·F · (σ1,k′ ⊗ id1 · id′k ⊗ σ1,1)⊗ idn)))

bifunctoriality II

≡ Tr1(Tr1(Trk
′
(σk′+1,1 ⊗ idm ·F · σ1,k′+1 ⊗ idn)))

definition of swap

Inductive case III: x = k + 1, y = k′ + 1

Trk
′+1(Trk+1(F)) ≡ Trk+1(Trk

′+1(σk′+1,k+1 ⊗ idm ·F · σk+1,k′+1 ⊗ idn))
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Trk
′+1(Trk+1(F))

≡ Trk
′+1(Tr1(Trk(F)))

definition of trace

≡ Tr1(Trk
′+1(σk′+1,1 ⊗ idm ·Trk(F) · σ1,k′+1 ⊗ idn))

inductive case II

≡ Tr1(Trk
′+1(Trk(idk ⊗ σk′+1,1 ⊗ idm ·F · idk ⊗ σ1,k′+1 ⊗ idn)))

tightening

≡ Tr1(Tr1(Trk
′
(Trk(idk ⊗ σk′+1,1 ⊗ idm ·F · idk ⊗ σ1,k′+1 ⊗ idn))))

definition of trace

≡ Tr1(Tr1(Trk(Trk
′
(σk′ ,k ⊗ id1+1+m · idk ⊗ σk′+1,1 ⊗ idm ·F · idk ⊗ σ1,k′+1 ⊗ idn · σk,k′ ⊗ id1+1+n))))

IH

≡ Tr1(Trk+1(Trk
′
(σk′ ,k ⊗ id1+1+m · idk ⊗ σk′+1,1 ⊗ idm ·F · idk ⊗ σ1,k′+1 ⊗ idn · σk,k′ ⊗ id1+1+n)))

definition of trace

≡ Tr1(Trk+1(Trk
′
((σk′ ,k ⊗ id1+1 · idk ⊗ σk′+1,1)⊗ idm ·F · (idk ⊗ σ1,k′+1 · σk,k′ ⊗ id1+1)⊗ idn)))

bifunctoriality I/II

≡ Trk+1(Tr1(σ1,k+1 ⊗ idm ·Trk
′
((σk′ ,k ⊗ id1+1 · idk ⊗ σk′+1,1)⊗ idm ·F · (idk ⊗ σ1,k′+1 · σk,k′ ⊗ id1+1)⊗ idn) · σk+1,1 ⊗ idm))

inductive case I

≡ Trk+1(Tr1(Trk
′
(idk′ ⊗ σ1,k+1 ⊗ idm · (σk′ ,k ⊗ id1+1 · idk ⊗ σk′+1,1)⊗ idm ·F ·

tightening (idk ⊗ σ1,k′+1 · σk,k′ ⊗ id1+1)⊗ idn · idk′ ⊗ σk+1,1 ⊗ idm)))

≡ Trk+1(Trk
′+1(idk′ ⊗ σ1,k+1 ⊗ idm · (σk′ ,k ⊗ id1+1 · idk ⊗ σk′+1,1)⊗ idm ·F ·

definition of trace (idk ⊗ σ1,k′+1 · σk,k′ ⊗ id1+1)⊗ idn · idk′ ⊗ σk+1,1 ⊗ idn))

≡ Trk+1(Trk
′+1((idk′ ⊗ σ1,k+1 · σk′ ,k ⊗ id1+1 · idk ⊗ σk′+1,1)⊗ idm ·F · (idk ⊗ σ1,k′+1 · σk,k′ ⊗ id1+1 · idk′ ⊗ σk+1,1)⊗ idn))

bifunctoriality II

≡ Trk+1(Trk
′+1(σk′+1,k+1 ⊗ idm ·F · σk+1,k′+1 ⊗ idn))

definition of swap
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