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Abstract

Digital circuits, despite having been studied for nearly a century and used at scale for about half
that time, have until recently evaded a fully compositional theoretical understanding, in which arbitrary
circuits may be freely composed together without consulting their internals. Recent work remedied this
theoretical shortcoming by showing how digital circuits can be presented compositionally as morphisms
in a freely generated symmetric traced category. However, this was done informally; in this paper
we refine and expand the previous work in several ways, culminating in the presentation of three
sound and complete semantics for digital circuits: denotational, operational and algebraic. For the
denotational semantics, we establish a correspondence between stream functions with certain properties
and circuits constructed syntactically. For the operational semantics, we present the reductions required
to model how a circuit processes a value, including the addition of a new reduction for eliminating
non-delay-guarded feedback; this leads to an adequate notion of observational equivalence for digital
circuits. Finally, we define a new family of equations for translating circuits into bisimilar circuits of a
‘normal form’, leading to a complete algebraic semantics for sequential circuits.

1 Introduction
Bothe was awarded the 1954 Nobel Prize in physics for creating the electronic AND gate in 1924. In the
ensuing decades, exponential improvements in digital technology have led to the development of the
defining technologies of the modern world, It may therefore seem improbable that there are theoretical
gaps remaining in our mathematical and logical understanding of digital circuits.

To be more precise, by ‘digital circuits’ we primarily understand electronic circuits: deterministic
circuits with clear notions of input and output and which work on discrete signals. A classic example is
that of logical gates and basic memory elements of known and fixed delays, but there are alternatives
such as CMOS transistors operating in saturation mode. What we do not attempt to handle are circuits
operating on continuous signals (such as amplifiers) or in continuous time (such as asynchronous
circuits), nor electrical circuits of resistors and capacitors, which are quite different [BS22].

Our goal is to devise a fully compositional model of digital circuits. By ‘fully compositional’ we mean
that a larger circuit can be built from smaller circuits and interconnecting wires without paying heed
to the internal structure of these smaller circuits. Of course, composition comes naturally to digital
circuits and is widely used informally [Gor82]. Unfortunately one runs into an obstacle when trying to
formalise this notion mathematically: electrical connections can be created that inadvertently connect
the output of some elementary gate back to its input such that no memory elements are encountered
along the path. Such a path, called a ‘combinational feedback loop’ (or ‘cycle’), is not handled by
established mathematical theories of digital circuits, so conventional digital design and engineering
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reject such circuits. To enforce this restriction, we need to always look inside circuits as we compose
them, ensuring that no illegal combinational feedback loops are created, or resort to some ‘safe’ subset of
circuits [Chr+21]. This represents a failure of compositionality: what we want to do is to compose any
circuits constructed from a fixed set of components.

On general principle, we have reason to expect that a compositional theory of digital circuits may
lead to more streamlined methods of analysis and verification, which, in time, may also lead to new ap-
plications. Combinational circuits, which model functions, have an obvious compositional syntax [Laf03],
but sequential circuits, which contain delay and feedback, are more subtle. The first forays towards a fully
compositional syntactic and categorical account of circuits have been made recently [GJ16; GJL17], but
they do not paint a fully formal and coherent picture. This paper develops the informal presentation into
a mathematically rigorous framework.

Our first contribution is to give, for the first time, a sound and complete denotational semantics
to digital circuits in the domain of causal and monotone stream functions. The completeness result
depends on a novel albeit straightforward lifting of Mealy machines [Mea55] to act on alphabets with
a lattice structure, utilising a handy coalgebraic perspective [Rut06]. Using Mealy machines to give a
semantic interpretation to digital circuits is an established methodology [KJ09], and here they act as a
‘bridge’ between the syntactic and the semantic domain, showing how existing circuit methodologies are
compatible with our rigorous mathematical framework.

The second contribution of the paper is to generalise and systematise previous efforts [GJL17] to
formulate a graph-rewriting-based operational semantics for digital circuits. The novelty is a new
reduction rule for eliminating non-delay-guarded feedback using a version of the Kleene fixpoint theorem,
thus solving the problem of productivity that previous operational semantics only solve partially. The
denotational and operational semantics together achieve the long-standing goal of creating a semantic
theory of digital circuits using the same methodology as programming languages.

The methodological ‘glue’ that binds together the two approaches is a new sound and complete
algebraic semantics, the third and final contribution of the paper. This approach replaces the previous ad-
hoc way of introducing equations for digital circuits based on raw intuitions with a systematic approach
guided by the denotational semantics. The key technical result of this method is deriving pseudo-normal
forms of digital circuits.

Although the motivation of this work is foundational, there are some early hints of possible exciting
applications, such as for partial evaluation and blackboxing. These are not yet industrial-strength
applications, but the simplicity and power of the framework must hold a certain degree of appeal and
promise.

2 Syntax
Let us first recall the syntax of digital circuits [GJ16].

Definition 1 (Circuit signature). A circuit signature Σ is a tuple (V, •,P, dom, cod) whereV is a finite set of
values with a distinguished element •, P is a (usually finite) set of primitives, and dom, cod : P → N are arity
and coarity functions respectively.

We use an arbitrary set of values rather than restricting to the traditional ‘true’ and ‘false’ so the frame-
work can model circuits at multiple layers of abstraction. For example, the values could contain ‘weak’
and ‘strong’ values, as in metal-oxide-semiconductor field-effect transistors (MOSFET). Alternatively,
one could work at a higher level of abstraction and set the values to be natural numbers, for working with
arithmetic circuits. All we require is a distinct element • for a disconnected wire: a lack of information.

A particularly important signature is that of gate-level circuits, a common level of abstraction for
digital circuits.
Example 2 (Gate-level circuits). The gate-level circuit signature is ΣB = (VB,⊥,PB, domB, codB), where
VB := {⊥, f, t,⊤}, respectively representing no signal, a false signal, a true signal and both signals, PB :=
{AND,OR,NOT}, domB := AND 7→ 2,OR 7→ 2,NOT 7→ 1, and codB := − 7→ 1.

A circuit signature freely generates symmetric monoidal categories (SMCs) of digital circuits. These
are PROPS (categories of PROducts and Permutations) [Mac65], SMCs with natural numbers as objects
and addition as tensor product on objects.

Instead of term strings, we employ the two dimensional syntax of string diagrams [JS91; JSV96; Sel11].
We draw an arbitrary generator φ : m→ n as a box φ... nm ... with m input wires and n output wires. To
avoid clutter and to enable reasoning about diagrams with arbitrary inputs and outputs, wires may be
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Figure 1: The equations of traced PROPS, represented in string diagram notation

collapsed into one wire and labelled appropriately ϕm n . Here this is purely notational, but this idea
has been formalised syntactically elsewhere [WGZ23].

Composite morphisms, or ‘terms’, are drawn as wider boxes fm n ; composition as horizontal

juxtaposition g nfm and tensor product as vertical juxtaposition
fm n

gp q
. One of the advantages of

this notation over standard term syntax is that structural rules (identity, associativity, functoriality) are
‘absorbed’ into the diagrams, as illustrated in Fig. 1.

Circuits with no delay and feedback are known as combinational circuits; these circuits implement
functions.

Definition 3 (Combinational circuits). Given a circuit signature Σ = (V, •,P, dom, cod), let CCircΣ be the
symmetric strict monoidal prop generated freely over

dom(ϕ) cod(ϕ)ϕ for each ϕ ∈ P , , , and .

Each symbol in the signature defines a generator in CCircΣ. The remaining generators are structural
generators for manipulating wires, present regardless of the signature. In order, they are for introducing
wires, forking wires, joining wires and eliminating wires.

Example 4. The CCircΣB
gates are , , and .

Arbitrary combinational circuits are drawn as boxes with light blue backgrounds fm n , but when
drawing generators explicitly the coloured backgrounds will often be omitted in the interests of clarity.
Since the category is freely generated, morphisms are defined by juxtaposing the generators in a given
signature, the identity and the symmetry, sequentially or in parallel.

Notation 5. It is straightforward to define arbitrary-bit versions of the structural generators using the axioms of
SMCs. In diagrams, these are drawn the same way as their single-bit counterparts:

n n
n
n

n
n
n

n n n
n
mn

m

Combinational circuits have no internal state. Real-world circuits often involve delay and feedback:
these are known as sequential circuits. To model feedback, extra structure must be added to the category
of combinational circuits in the form of a trace.

3



R

S

Q

Q

Figure 2: An SR NOR latch, and a construction in SCircΣB
.

Definition 6 ([JSV96], Sec. 2; [Has09], Sec. 3). A symmetric traced monoidal category, often abbreviated
as STMC, is a SMC C equipped with a family of functions TrXA,B (−) : C(X ⊗A,X ⊗B) → C(A,B) satisfying
the axioms of STMCs listed in Fig. 1.

In string diagrams, the trace is represented by joining some of the inputs of a circuit to its outputs.

Trxm,n

(
Fm

x
n
x
) def
= Fm n

x

Definition 7 (Sequential circuits). Let SCircΣ be the STMC freely generated over the generators of CCircΣ,
as given in Definition 3, along with new generators v for each v ∈ V \ •, and .

Morphisms in SCircΣ are distinguished from those inCCircΣ by a darker green colouring Fm n

. The additional generators introduce state into circuits. The smaller generators with no inputs are
instantaneous values: the initial state of a circuit. We will use ‘value’ to refer to the generator in
addition to any sequential generators v .
Example 8. The values of SCircΣB

are , f , t and ⊤ ; the first is combinational and the others are
sequential.

Note that every circuit in CCircΣ is also a circuit in SCircΣ.
Remark 9. The pentagon is a delay generator. The mathematical interpretation of a delay is straight-
forward: it is the gap between one element of a stream and the next element. What physical aspect of a
digital circuit a delay models is more flexible. The simplest interpretation is to think of a delay simply
as a D flipflop in a clocked circuit, case in which the the delay is one clock cycle. However, there is a
more subtle interpretation in which we can think of the delay as a minimum observable duration, which
can be used to model inertial delay on wires, up to some fixed precision. In the rest of the paper, unless
otherwise specified, the intended physical interpretation is the former.
Example 10 (SR latch). One example of a delay being used to model wire delay is in an SR NOR latch,
shown in Fig. 2; a NOR gate is defined as := . SR latches are used to hold state:
when the S input is pulsed true the Q output will be held at true until the R input is true. SR latches work
because of delays in how gates and wires transmit signals; one of the feedback loops between the two
NOR gates will ‘win’. In SCircΣ this is modelled by using a different number of delay generators on the
wires between the top and the bottom of the latch, as shown in Fig. 2.

Notation 11. As in CCircΣ, it is useful to reason with multiple sequential generators in parallel. Parallel delays
will be drawn as nn and, for a word v ∈ Vn, parallel values as nv .

3 Denotational semantics
Circuits in SCircΣ are purely syntax: they currently have no behaviour associated with them. In this
section wewill present a fully compositional denotational semantics for sequential circuits based on causal,
monotone and finitely specified stream functions. This denotational semantics is constructed compositionally
using a functor from SCircΣ to a PROP of stream functions with the desired properties; a reverse functor
is then defined which maps a stream function f to a circuit in SCircΣ with f as its denotation, showing
that this denotational semantics is sound and complete.
Remark 12. In [MSB12], the semantics of digital circuits with delays cycles are presented using timed
ternary simulation, an algorithm to compute how a sequence of circuit outputs stabilises over time given
the inputs and value of the current state. Essentially, one must solve a system of equations in terms of
the nodes inside a circuit to determine its behaviour. Our approach is different as we assign each circuit
a concrete stream function describing its behaviour, and show that every such stream function is the
behaviour of at least one circuit in SCircΣ.
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Figure 3: The lattice structure on VB, and the truth tables of Belnap logic gates [Bel77].

Recall that a function f between two posets is monotone if x ≤ y ⇒ f(x) ≤ f(y), and a lattice is a
poset in which each pair of elements has a least upper bound ∨ (a join) and a greatest lower bound ∧ (a
meet); subsequently every finite lattice has an infimum ⊥ and a supremum ⊤. We write vn for the n-tuple
containing only v, and call a function f : Vm → Vn ⊥-preserving if f(⊥m) = ⊥n.

Definition 13 (Interpretation). An interpretation is a tuple I = (Σ,⊑, J−K) where Σ := (V, •,P, dom, cod)
is a circuit signature, (V,⊑) is a lattice with • as the infimum, and J−K maps each p ∈ P to a ⊥-preserving
monotone function Vdom(p) → Vcod(p).

In an interpretation, the finite set of values is lifted to a lattice. The higher a value in the lattice, the
more information it specifies.
Example 14. Recall the signature ΣB = (VB,⊥,PB, domB, codB, ) from Ex. 2. The lattice (VB,⊑B) is
defined as in the diagram in the left of Fig. 3. The gates are interpreted using the Belnap tables [Bel77]
in Fig. 3. Let J−KB := {AND 7→ ∧,OR 7→ ∨,NOT 7→ ¬}; the Belnap interpretation is defined as
IB = (ΣB,⊑B, J−KB)

Semantics are expressed formally using a PROP morphism, a strict symmetric (traced) monoidal
functor between (traced) PROPs that is the identity on objects. When the domain of a functor is freely
generated, it can be defined solely by its action on the generators.

Definition 15. Let FuncI be the PROP in which the morphismsm→ n are the monotone⊥-preserving functions
Vm → Vn.

Definition 16. Let J−KCI : CCircΣ → FuncI be the PROP morphism with its action defined as
q

p
yC

I := x 7→ JpK (x)

r zC

I
:= (v) 7→ ()

r zC

I
:= (v) 7→ (v, v)

r zC

I
:= () 7→ (⊥)

r zC

I
:= (v, w) 7→ (v ⊔ w)

Remark 17. One may wonder why the fork and join have different semantics, as they would be physically
realised by the same wiring. This is because digital circuits have a notion of causality; outputs can only
connect to inputs. In real life one could connect two digital devices together ignoring causality, but this
might lead to undefined behaviour in the digital realm. This is modelled by the use of the join in the
lattice: for example in the Belnap signature if one tries to join together t and f, the overspecified ⊤ value
will be produced.

The outputs of sequential circuits may depend on previous inputs. Their inputs are thus streams,
infinite sequences of values. Given a setM , we denote the set of streams ofM byMω. A stream can
equivalently be viewed as a function N →M ; consequently we write σ(k) for the kth element of a stream
σ ∈Mω . There are two important operations used to reason with streams.

Definition 18 (Operations on streams). The initial value is a function hd(−) : Mω →M := σ 7→ σ(0),
producing the ‘head’ of a stream; and the stream derivative is a a function tl(−) : Mω →Mω := σ 7→ (i 7→
σ(i+ 1)), producing its ‘tail’.

These operations can define streams: for an element x ∈M and stream σ ∈Mω, the stream x :: σ is
the unique stream with initial value x and stream derivative σ.

Sequential circuits are semantically interpreted as stream functions, which consume streams of inputs
and produce streams of outputs. In particular, we will define the semantics of a circuit as a causal
(Def. 19), monotone (Def. 22), and finitely specified (Def. 21) stream function. We begin with causality,
which states that the output of a circuit depends only on the inputs it has seen ‘so far’.

5



Definition 19 (Causal stream function [Rut06]). A stream function f : Mω → Nω is causal if for all i ∈ N
and all σ, τ ∈Mω , σ(j) = τ(j) for all j ≤ i implies f(σ)(i) = f(τ)(i).

Causality is a form of continuity; a stream function being causal means the ith element of the output
stream depends only on inputs 0 through i. This allows the initial value and derivative operations defined
for streams to be extended to causal stream functions.

Definition 20 (Functional stream derivative [Rut06]). Fix a causal stream function f : Mω → Nω. Given
a ∈M , the initial output of f on input a is f [a] := hd(f(a :: σ)) ∈ N for arbitrary σ ∈Mω. The functional
stream derivative of f on input a is the function ∂af : Mω → Nω := σ 7→ tl(f(a :: σ)). In the upcoming
results, we may abbreviate ∂af to fa.

The causality of f ensures f [a] does not depend on the choice of σ. ∂af can be thought of as acting
as f would ‘had it seen the input a first’. This can be extended to finite words of elements ofM ; the set
of such sequences is denotedM⋆ and the empty word as ε. Arbitrary length words are written with an
underline, e.g. v := t :: f ∈ V⋆; words of words of fixed width are written additionally with an overline,
e.g. v := (t, f) :: (f, t) ∈ (V2)⋆.

Definition 21. For a causal stream function f : Mω → Nω , we define fw for w ∈M⋆ by induction on the length
of w. If w is the empty word, fw = f . Otherwise we can write w = u :: a, in which case fw = ∂afu. We say f is
finitely specified if the set {fw : w ∈M⋆} is finite.

Since circuits are built from components whose interpretations are monotone functions, their inter-
pretations as stream functions must also be monotone.

Definition 22. For a partially ordered setM and streams σ, τ ∈Mω, we say σ ≤Mω τ if σ(k) ≤M τ(k) for all
k ∈ N. A causal stream function f : Mω → Nω is monotone if it is monotone with respect to the above orderings
onMω and Nω .

We may drop the subscripts on these orders when they are obvious from context.
It is now possible to assemble a traced PROP of stream functions that correspond to sequential circuits.

Given words v ∈ Xm, w ∈ Xn, we write xw ∈ Xm+n for their concatenation; abusing notation, given two
streams σ ∈ (Xm)

ω
, τ ∈ (Xn)

ω, we also write στ ∈ (Xm+n)
ω for their pointwise concatenation. For a

stream σ ∈ (Xm+n)
ω , we write π0(σ) ∈ (Xm)

ω for the stream of words containing the firstm characters
of words in σ, and π1(σ) ∈ (Xn)

ω for the stream of words containing the last n characters.

Lemma 23. Causality, monotonicity and being finitely specified is preserved by composition and tensor product.

Proof. For causality, if the ith element of two stream functions f and g only depends on the first i + 1
elements of the input, then so will their composition. For finitely many stream derivatives, both the
composition and product of two stream functions f and g, the largest the set of stream derivatives could
be is the product of stream derivatives of f and g, so this will also be finite. Finally, the composition and
product of any monotone function is monotone.

Definition 24. Let StreamI be the PROP in which the morphismsm→ n are the causal, monotone and finitely
specified stream functions f : (Vm)

ω → (Vn)
ω .

To model the semantics of circuits, StreamI needs a trace.

Proposition 25. Let f : (Vx+m)
ω → (Vx+n)

ω be a morphism in StreamI . For each σ ∈ (Vm)
ω, let µf (σ)

be the least fixed point of the endofunction τ 7→ π0(f(τσ)); a trace Trx (f) : (Vm)
ω → (Vn)

ω is defined by
(Trx (f))(σ) := π1(f ((µf (σ))σ)).

Proof. We must first show that σ 7→ π1 (f(µf (σ)σ)) is in StreamI : it is causal, finitely specified, and
monotone.

Since f : (Vx+m)
ω → (Vx+m)

ω is a morphism of StreamI , it has finitely many stream derivatives.
For each stream derivative fw, let the function f̂w : (Vx+m)

ω → (Vx)
ω to be τσ 7→ π0(fw(τσ)). Note that

each of these functions are causal and monotone, because they are constructed from pieces that are causal
and monotone.

In particular, µf (σ) is the least fixed point of f̂ε ((−)σ). Using the Kleene fixed point theorem, the
least fixed point of f̂((−)σ) can be obtained by composing f̂((−)σ) repeatedly with itself. This means
that µf (σ) =

⊔
k∈N f̂

k(⊥ω, σ) where f̂k is the k-fold composition of f(−, σ) with itself, i.e. f̂0(τσ) = τ

6



and f̂k+1(τσ) = f̂
((
f̂k(σ, τ)

)
σ
)
. That the mapping µf is causal and monotone is straightforward: each

of the functions in the join is causal and monotone, and join preserves these properties. It remains to
show this mapping has finitely many stream derivatives.

When equipped with ⪯, the set of functions (Vx+m)
ω → (Vx)

ω is a poset, of which {f̂w |w ∈
(Vx+m)⋆} is a finite subset. Restricting the ordering ⪯ to this set yields a finite poset. Since this poset
is finite, the set of strictly increasing sequences in this poset is also finite. We will now demonstrate a
relationship between these sequences and stream derivatives of µf .

Suppose S = f̂w0 ≺ f̂w1 ≺ · · · ≺ f̂wℓ−1
is a strictly increasing sequence of length ℓ in the set of stream

functions {f̂w |w ∈ (Vx+m)⋆}. We define a function gS : (Vm)
ω → (Vx)

ω as (σ) 7→
⊔

k∈N gk(σ)where

gk(σ) =


⊥ω if k = 0

f̂wk
((gk−1(σ))σ) if 1 ≤ k ≤ ℓ

f̂wℓ−1
((gk−1(σ))σ) if ℓ < k

.

Let the set G := {gS |S is a strictly increasing sequence}. When S is set to the one-item sequence f̂ , gS is
µf , so µf ∈ G. As G is finite, this means that if G is closed under stream derivative, µf has finitely many
stream derivatives. Any element of G is either ⊥ω or has the form σ 7→ f̂w(gk(σ)σ) for some σ ∈ (Vm)

ω

and k > 0. As ⊥ω is its own stream derivative, we need to show that applying stream derivative to the
latter produces another element of G.

σ 7→
(
f̂w((gk−1(σ))σ)

)
ab

= σ 7→ tl
(
f̂w(ab :: (gk−1(σ))σ)

)
= σ 7→ tl (π0 (fw(ab :: (gk−1(σ))σ)))

= σ 7→ π0 (tl (fw(ab :: (gk−1(σ))σ)))

= σ 7→ π0 ((fw((gk−1(σ))σ))ab)

= σ 7→ π0 (f ab::w((gk−1(σ))σ))

= σ 7→ f̂ ab::w((gk−1(σ))σ)

As π0 (fab::w) is in G, the latter is closed under stream derivative. Subsequently, µf has finitely many
stream derivatives.

This means that all the components of σ 7→ π1(f(µf (σ)σ)) are causal, monotone and finitely specified,
and as these properties are preserved by composition, the composite must also have them, so σ 7→
π1(f(µf (σ)σ)) is in StreamI . To show that this is a trace, it remains to check the axioms of STMCs,
which can all be shown to hold fairly easily.

Semantics can now be assigned to circuits in SCircΣ with a traced PROP morphism into StreamI .
Definition 26. For each v ∈ V, let valv : (V0)

ω → Vω be defined as (valv)[()] := v and (valv)() := val⊥. Let
shiftv : V

ω → Vω be defined as (shiftv)[σ] := v and (shiftv)a::σ := shifta.
Lemma 27. The stream functions in Def. 26 are causal, monotone and finitely specified.
Proof. For the first four functions, the kth element of the output stream is computed by a monotone
operation on kth element of the input stream, so the stream function is monotone and causal. Since the kth
input element cannot affect a later output element, there is one stream derivative: the original function.
The function valv has no inputs so it is trivially causal and monotone. It has one stream derivative: the
stream function that constantly outputs ⊥. The function shift⊥ is causal as the i+ 1th output element
depends on only the ith element. There are |V| stream derivatives, as there is a different one for each
possible input value. Each of these stream derivatives is monotone, as the initial output is fixed regardless
of input, and, on input a, the stream derivative is the stream function that initially outputs a.

These stream functions are therefore morphisms in StreamI , so are suitable candidates for the
semantics of SCircΣ.
Definition 28. Let J−KSI : SCircΣ → StreamI be the traced PROP morphism defined as

q
F

yS

I (σ)(k) :=
q

F
yC

I (σ(k))

J v KSI := valv J KSI := shift⊥

Given a sequential circuit F , we say that the stream function
q

F
yS

I is its behaviour under I.

7



3.1 Monotone Mealy machines
Every circuit in SCircΣ now has a denotation in the form of a stream function in StreamI , computed
using J−KSI . For completeness of the denotational semantics, we need to show that every stream function
f in StreamI has a circuit in SCircΣ with f is its denotation.

As a tool to help answer this question, we lift the well-known formalism ofMealy machines [Mea55] to
lattices to yield monotone Mealy machines. Mealy machines are a common way of specifying the behaviour
of sequential circuits [KJ09], and there is a homomorphism from every Mealy machine to a causal,
finitely specified stream function [Rut06]. We establish that in the case of monotone Mealy machines this
homomorphism is to monotone stream functions, establishing monotone Mealy machines as a bridge
between circuits and stream functions.

Definition 29 (Mealy machine [Mea55]). LetM and N be finite sets. A (finite) (M,N)-Mealy machine is
a tuple (S, f, s0) where S is a finite set called the state space, f : S → (S ×N)M is the Mealy function, and
s0 ∈ S is the start state.

The setsM andN are the inputs and outputs of the machine. Given a state s ∈ S and input a ∈M , the
Mealy function f produces a pair f(s)(a) = ⟨s′, n⟩. We will use the shorthand f0 := (s, a) 7→ π0(f(s)(a))
and f1 := (s, a) 7→ π1(f(s)(a)) for the transition and output component of theMealy function respectively.

Mealy machines can be viewed coalgebraically. A coalgebra of an endofunctor F is a pair of an object
X and a morphism X → FX . The first two components of a (M,N)-Mealy machine (S, f) is a coalgebra
of the Set-endofunctor S 7→ (S ×N)M . We call this a Mealy coalgebra; essentially the same as a Mealy
machine but without a designated start state.
Example 30. In [BRS08], the notation f(s)(a) = ⟨s[a], sa⟩ is also used to describe the Mealy function. Let
Γ be the set of causal stream functionsMω → Nω for setsM and N , and let ν : Γ → (Γ×N)M be the
function defined as ν : (f, a) 7→ ⟨fa, f [a]⟩. Then (Γ, ν) is an (M,N)-Mealy coalgebra.

A homomorphism h between two Mealy coalgebras (S, f) and (T, g) with interface (M,N) is a
function h : S → T preserving transitions and outputs, i.e. for a Mealy function f a homomorphism
h satisfies h (f0(s, a)) = f0(h(s), a) and h (f1(s, a)) = f1(s, a). The final Mealy coalgebra has a unique
homomorphism from every other Mealy coalgebra: the coalgebra of streams defined in Ex. 30.

Proposition 31 ([Rut06], Prop. 2.2). For every Mealy coalgebra (S, f), there exists a unique homomorphism
! : (S, f) → (Γ, ν).

Proof. A homomorphism g : (S, f) → (Γ, ν) is a function S → Γ, so for a state s ∈ S, !(s) will be a stream
functionMω → Nω. For stream σ ∈ Mω, the elements of the stream !(s)(σ) are the outputs f would
produce given those inputs, starting from state s.

Not allMealymachines (S, f, s) correspond to a digital circuit inSCircΣ; those that do can be identified
by checking whether !(s) lands in StreamI . By definition, all stream functions in the image of !(−) are
causal, and since we only reason with finite Mealy machines we can also conclude the following:

Lemma 32. Given a Mealy machine (S, f, s), !(s) is finitely specified.

Proof. S is finite, and !(−)must preserve transitions.

Monotonicity ismore subtle, as the states of aMealymachine are not naturally ordered. However, since
each state corresponds to a stream function, they can inherit the ordering from Def. 22, and subsequently
a notion of monotonicity.

Definition 33. LetM and N be posets and let f, g : Mω → Nω be stream functions. We say f ⪯ g if f(σ) ≤Nω

g(σ) for all σ ∈Mω .

Definition 34 (State order). Given posetsM,N and a (M,N)-Mealy machine (S, f, s0), we say that, for states
s, s′ ∈ S, s ⪯ s′ if !(s) ⪯!(s′), where ! is the unique function S → Γ.

Definition 35 (Monotone Mealy machine). Given posets (M,≤M ) and (N,≤N ), an (M,N)-Mealy machine
(S, f, s) is called monotone if f is monotone with respect to the appropriate orders.

Lemma 36. For a causal stream function f : Mω → Nω, a 7→ f [a] and a 7→ fa are monotone if and only if f is
monotone.
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Proof. First the (⇐) direction. Recall that monotonicity implies that, for a given stream function g and
inputs σ, τ , if σ ≤ τ i.e. if σ(i) ≤ τ(i) for all i ∈ N, then g(σ) ≤ g(τ) i.e. g(σ)(i) ≤ g(τ)(i). Observe that
this means that g(a :: σ)(i) ≤ g(b :: σ)(i) if a ≤ b. Using this fact it is a simple exercise to show that the
a 7→ g[a] and a 7→ ga are monotone. Let a, b ∈M such that a ≤ b. First we show a 7→ g[a] is monotone:

g[a] = hd(g(a :: σ))

= g(a :: σ)(0)

≤ g(b :: σ)(0) by monotonicity of g
= hd(g(b :: σ))

= g[b]

And now we show that a 7→ ga is monotone:

ga(σ)(i) = tl(g(a :: σ))(i)

= g(a :: σ)(i+ 1)

≤ g(b :: σ)(i+ 1) by monotonicty of g
= tl(g(b :: σ))(i)

= gb(σ)(i)

Now the (⇒) direction. For a stream function g, assume that a 7→ g[a] and a 7→ ga are monotone. We
need to show that g is monotone, i.e. for streams σ, τ , if σ ≤ τ then g(σ)(i) ≤ g(τ)(i). Let σ := w :: a :: σ′

and τ := w′ :: b :: τ ′ where w is a finite sequence of length k. Since σ ≤ τ , w ≤ w′ and a ≤ b. Let gw be
the result of repeatedly obtaining the stream derivative for each element of w: this is also monotone by
function composition. Therefore:

g(σ) = g(w :: a :: σ′)(k)

= tlk(g(w :: a :: σ′))(0)

= gw(a :: σ
′)(0)

= gw[a]

≤ gw[b] by monotonicity of a 7→ g[a]

= gw(b :: τ)(0)

≤ gw′(b :: τ)(0) by monotonicity of a 7→ ga

= tlk(g(w′ :: b :: σ′))(0)

= g(w′ :: τ ′)(k)

= g(τ)

Lemma 37. For a monotone Mealy machine S, f, s, !(s) is monotone.

Proof. The initial output and stream derivative of !(S, f)(s) is defined as a 7→ s[a] and a 7→ sa respectively:
as these are monotone by definition of a monotone Mealy machine, the stream function is monotone by
Lem. 36.

In order to map between circuits, stream functions, and monotone Mealy machines we assemble the
latter into a traced PROP. We use a standard notion of Mealy machine composition.

Definition 38 (Cascade product [Gin14]). Given an (M,N)-Mealy machine (S, f, s0) and an (N,P )-Mealy
machine (T, g, t0), their cascade product is a (M,P )-Mealy machine defined as

(S × T, ((s, t), a) 7→ ((f0(s, a), g0(t, f1(s, a)), g1(t, f1(s, a))), (s0, t0)).

Definition 39. Let MealyI be the PROP with morphismsm → n the monotone (Vm,Vn)-Mealy machines.
Composition is by cascade product and tensor is by direct product.

Definition 40. Let (S, g, s0) be a monotone (Vx+m,Vx+n)-Mealy machine and let µs,a be the least fixpoint of
r 7→ π0(g(s, ra)) for fixed state s ∈ S and input a ∈ Vm. Then the least fixed point of (S, g, s0) is a monotone
(Vm,Vn)-Mealy machine defined as (S, (s, a) 7→ g (s, (µs,a) a) , s0).

9



Proposition 41. Def. 40 is a trace on MealyI .

Proof. Since Mealy machines in MealyI are monotone, their Mealy functions are also monotone, so they
have a least fixed point. The axioms of STMCs can be shown to hold with this construction.

Example 42. Consider the monotone (V3,V3)-Mealy machine with state set VB, initial state ⊥, and
Mealy function

g := (s, (v, u, w)) 7→ ⟨¬(u ∧ v), (¬(s ∧ w),¬(u ∧ v),¬(s ∧ w))⟩).

To take the trace of this machine, we must first compute the least fixed point of v 7→ ¬(s ∧ w), which
is clearly just ¬(s ∧ w). Therefore the Mealy function of the traced (V2,V2) machine is (s, (u,w)) 7→
g(s, (¬(s ∧ w), u, w)).

As MealyI is a STMC, we can define a traced PROP morphism to it from SCircΣ.

Definition 43. Let [−]I : SCircΣ → MealyI be the traced PROP morphism with action[
F

]
I :=

(
{()}, v 7→

(
(),

q
F

yC

I (v)
)
, ()

)
[ v ]I := ({sv, s⊥}, {sv 7→ (s⊥, v) , s⊥ 7→ (s⊥,⊥)}, sv)

[ ]I := ({sv | v ∈ V}, (sv, a) 7→ (v, sa) , s⊥)

Example 44. Applying [−]I to the SR NOR latch from Ex. 10 produces the monotone Mealy machine in
Ex. 42.

It is essential that the translation between circuits and monotone Mealy machines preserves behaviour:
if we translate a circuit F into a monotone Mealy machine and then into a stream function, this stream
function should be the behaviour of F .

Corollary 45. For a monotone Mealy machine (S, f, s0) ∈ MealyI , !(s0) ∈ StreamI .

Definition 46. Let !I(−) : MealyI → StreamI be a PROP morphism sending a monotone Mealy machine
(S, f, s0) to !(s0), where ! is the unique homomorphism (S, f) → (Γ, ν).

All that remains is to check that the translation from circuits to streams via monotone Mealy machines
agrees with the direct translation from circuits to streams.

Theorem 47. J−KSI = !(−) ◦ [−]I .

Proof. Since morphisms of MealyI and StreamI are both Mealy coalgebras, we just need to check that
the transitions and outputs of the image of [−]I and J−KSI agree.

3.2 Circuit synthesis
Using monotone Mealy machines, we will now define a map from a stream function f in StreamI into a
circuit with f as its behaviour, thus showing that causal, monotone and finitely specified stream functions
are a complete denotational semantics for sequential circuits. We do this by first recalling how to retrieve
a (monotone) Mealy machine from a causal (monotone) stream function, then lift the technique for
encoding Mealy machines as circuits [KJ09] to the monotone setting. Finally we will verify that this
construction does indeed preserve behaviour.

As mentioned above, a causal stream function f : Mω → Nω is in fact a Mealy machine with interface
(M,N). Given such a function f , a minimal Mealy machine is obtainable.

Corollary 48 (Corollary 2.3, [Rut06]). For a causal, finitely specified stream function f : Mω → Nω, let S
be the least set of causal stream functions including f and closed under stream derivatives: i.e. for all h ∈ S and
a ∈ M , ha ∈ S. Then the Mealy machine ⟨⟨f⟩⟩I = (S, g, f), where g(h)(a) = ⟨h[a], ha⟩, has the smallest state
space of Mealy machines with the property !I⟨⟨f⟩⟩I = f .

Proof. Since S is generated from the function f and is the smallest possible set, there are no unreachable
states in S and no two states can ‘share the same behaviour’.

Lemma 49. Let f : Mω → Nω be a monotone causal stream function for posets M and N ; given the Mealy
machine ⟨⟨f⟩⟩I = (S, g, f) defined as in Cor. 48, the Mealy function g is monotone.
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Proof. Lem. 36 shows these functions are monotone for fixed input letters: it remains to show that the
functions are monotone for fixed functions from S. Let h ∈ S and suppose a ≤M a′. Since h is monotone,
h[a] = hd (h(a :: σ)) ≤N hd (h(a′ :: σ)) = h[a′], and similarly for the transition function. As these functions
are monotone in both components, they are monotone overall.

Corollary 50. The map ⟨⟨−⟩⟩I defined in Cor. 48 is a PROP morphism StreamI → MealyI .

For regular Mealy machines, there is a standard procedure in circuit design [KJ09] in which each
state of the Mealy machine is encoded as a power of values and combinational logic used to transform
inputs into appropriate outputs.

For monotone Mealy machines, this procedure must respect monotonicity as the combinational logic is
constructed using monotone components; an arbitrary encoding cannot be used. We will now show how
to select a suitable encoding; recall from Def. 34 that the states in a monotone Mealy machine inherit an
ordering from their corresponding stream functions.

Definition 51 (Monotone encoding). Let S be a set with a partial order ⪯ and total order ≤ such that the
elements of S form a chain s0 ≤ s1 ≤ · · · ≤ sk−1. The≤-encoding for this assignment is a function γ≤ : S → Vk

defined as γ≤(s)(i) := ⊤ if si ⪯ s and γ≤(s)(i) := ⊥ otherwise.

Example 52. Recall the monotone Mealy machine from Ex. 42, which has state set VB := {⊥, t, f,⊤}.
We choose the total order ≤ on VB as ⊥ ≤ t ≤ f ≤ ⊤; subsequently, the ≤-encoding is defined as
⊥ 7→ ⊤⊥⊥⊥, t 7→ ⊤⊤⊥⊥, f 7→ ⊤⊥⊤⊥,⊤ 7→ ⊤⊤⊤⊤.

Lemma 53. For an ordered state space (S,⪯) and a ≤-encoding γ≤, s ⪯ s′ if and only if γ≤(s) ⊑ γ≤(s
′).

Proof. First the (⇒) direction. Let si ⪯ sj ; we need to show that for every l < k, si(l) ⊑ sj(l). The only
way this can be violated is if si(l) = ⊤ and sj(l) = ⊥. But since si ⪯ sj , if sl ⪯ si then sl ⪯ sj also holds.

Now the (⇐) direction. Assume that γ≤(si) ⊑ γ≤(sj); we need to show that si ⪯ sj ; i.e. that
γ≤(sj)(i) = ⊤ If γ≤(si) ⊑ γ≤(sj), then for each l < k then γ≤(si)(l) ⊑ γ≤(sj)(l); in particular γ≤(si)(i) ⊑
γ≤(sj)(i) By definition of γ≤, γ≤(si)(i) = ⊤, so if γ≤(si) ⊑ γ≤(sj) then γ≤(sj)(i) is also ⊤.

The goal is to construct a combinational circuit morphism that, when interpreted as a function,
implements the output and transition function of the Mealy machine. However, such a morphism may
not exist for all interpretations.

Definition 54 (Functional completeness). An interpretation I of Σ is functionally complete if there exists a

map ||−|| : FuncI → SCircΣ sending f : Vm → Vn to a circuit of the form
F

v for some word v ∈ V⋆

such that J||f ||KSI (σ)(i) = f(σ(i)).

For a given interpretation there may bemany suchmaps, but we will assume there is a fixed procedure
||−|| and refer to a circuit ||f || as the normalised circuit for f .
Remark 55. Note that ||−|| maps to SCircΣ, as the function ||f || could require the use of values, a
sequential component.
Example 56. The Belnap interpretation from Ex. 14 is functionally complete; see Appendix A.1 for the
details.

To retrieve a circuit from a monotone Mealy machine in a functionally complete interpretation, we
use the Mealy function.

Definition 57 (Monotone completion). For lattices M,N,P such thatM ⊆ N , and a monotone function
f : M → P , let the monotone completion of f be the function fm : N → P recursively defined as

fm(v) =


f(v) if v ∈M

⊥ if v = ⊥m,⊥ ̸∈M⊔
{fm(w) |w ≤N v} otherwise

Definition 58 (Monotone Mealy encoding). For a monotone Mealy machine (S, f, s0) with k states and a
monotone encoding γ≤, amonotone Mealy encoding is a function γ≤(f) : Vk ×Vm → Vk ×Vn defined as
the monotone completion of the function (γ≤(s), x) 7→ (γ≤(f0(s, x)), f1(s, x)).

Lemma 59. A monotone Mealy encoding is in FuncI .
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Proof. AMealy encoding is monotone as it is a monotone completion. There cannot be a state encoded as
⊥k, since at least one bit must be ⊤; this means the monotone completion will send the input ⊥k ++⊥m

to ⊥k ++⊥n: it is ⊥-preserving.

For the purposes of defining amap frommonotoneMealymachines to circuits using aMealy encoding,
we will specify a way of establishing a fixed state order for a given interpretation.

Definition 60 (Chosen state order). Let (S, f, s0) be a monotone Mealy machine with input spaceVm, and let≤
be a total order onV; ≤ can be extended to (Vm)

⋆ using the lexicographic order. Given a state s, let ts,≤ ∈ (Vm)
⋆

be the minimal element of the subset of words that transition from s0 to s, ordered by ≤. Then the chosen state
order ≤S is a total order on S defined as s ≤S s

′ if ts,≤ ≤ ts′,≤.

In the interests of brevity we will introduce some notation for a delay component ‘with an initial
value’.

Notation 61. For v ∈ Vn, let nvn :=
n

n
v .

We call this a register, to distinguish it from a plain delay.

Definition 62. For a functionally complete interpretation I and total order≤ onV, let ||−||≤I : MealyI → SCircΣ

be the traced PROPmorphismwith action defined for amonotoneMealymachine (S, f, s) as producing γ≤(s) ||γ≤(f)|| nm
.

We can characterise the image of ||−||≤I in terms of the initial output and stream deriative of its stream
interpretation.

Proposition 63. Given a combinational circuit F̂
x x
m n , let f be the map with action (s) 7→

r
F̂

s
nm

x zS

I
and

let f̂ :=
q

F̂
yC

I . Then, f(s)[a] = π1(f̂(s, a)) and f(s)a = f(π0(f̂(s, a))).

Proof. None of the traced inputs affect the outputs at the current cycle, so the initial output is trivial. The
least fixpoint is reached immediately as µa := π0(f̂(s, a)) and the traced input is captured by the delay,
so the derivative will indeed be f(µa).

We now show that translating a monotone Mealy machine into a circuit with ||−||≤I preserves its
behaviour, regardless of encoding.

Theorem 64. For functionally complete interpretations, !(−) = J−KSI ◦ ||−||≤I .

Proof. For fixed state set S andMealy function g, let h := (s) 7→ !I(S, g, s) and h′ := (s) 7→
r
||(S, g, s)||≤I

zS

I
.

We will show that for a state s ∈ S, there is a bisimulation between h(s) and h′(s).
We can transform h′(s) into a circuit of the form in Prop. 63 by concatenating the values created by

||−|| to the encoded state using axioms of STMCs. Then, by finality of !I(−), Def. 62 and Prop. 63, these
stream functions both have initial output π1(g(s, a)). The former has h(s)a = h(π0(g(s, a))) and the latter
has h′(s)a = γ(π0(g(s, a)) = h′(π0(g(s, a))). As h(s) and h′(s) are defined on all states, !I(S, g, s) andr
||(S, g, s)||≤I

zS

I
are equal for any Mealy machine (S, g, s).

We conclude by showing that each function in StreamI has at least one circuit in SCircΣ with the
same behaviour under I.

Corollary 65. For functionally complete interpretations, J−KSI ◦ ||−||≤I ◦ ⟨⟨−⟩⟩I = idStreamI .

Proof. First we show the former:

J−KSI ◦ ψ ◦ ϕ = J−KSI ◦ ||−||≤I ◦ ⟨⟨−⟩⟩I ◦ !(−) ◦ [−]I
= !(−) ◦ ⟨⟨−⟩⟩I ◦ !(−) ◦ [−]I Thm. 64
= !(−) ◦ [−]I Cor. 48

= J−KSI Thm. 64
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Now the latter:

ϕ ◦ ψ = !(−) ◦ [−]I ◦ ||−||≤I ◦ ⟨⟨−⟩⟩I
= J−KSI ◦ ||−||≤I ◦ ⟨⟨−⟩⟩I Thm. 47
= !(−) ◦ ⟨⟨−⟩⟩I Thm. 64
= idStreamI Cor. 48

There is no isomorphism betweenSCircΣ andStreamI asmany circuitsmay have the same semantics
but different syntax.

Definition 66 (Denotational equivalence). We say that two sequential circuits are denotationally equivalent
under I , written Fm n ≈I Gm n if

q
F

yS

I =
q

G
yS

I . Let SCircΣ/≈I be the result of quotienting SCircΣ
by ≈I .

Corollary 67. For functionally complete interpretations, SCircΣ/≈I
∼= StreamI .

This confirms that, for a functionally complete interpretation I , the PROP StreamI of causal, finitely
specified and monotone stream functions, is a sound and complete semantic domain for sequential circuits:
every circuit in SCircΣ has a stream function in StreamI and every function f ∈ StreamI has a class
of circuits with f as their behaviour.

4 Operational semantics
The behaviour of two circuits in SCircΣ can be compared by examining their corresponding stream
functions. However, translating a circuit into a stream function obscures the internal structure of the
circuit, much like representing a combinational circuit by its truth table To better relate behaviour and
structure in circuits we now define an operational semantics which evaluates circuits in a stepwise manner.
An informal operational semantics was presented in [GJL17] but only for the case of closed circuits with
delay-guarded feedback; in this section we drop these two requirements and present a sound and complete
operational semantics for all sequential circuits.

An operational semantics is defined in terms of reductions. Here we are motivated by mechanising
circuit reduction; for a set of reductions to be suitable then there should be a terminating strategy for
evaluating inputs to circuits.

Notation 68 (Reduction). A reduction from Fm n to Gm n , is denoted Fm n ⇝ Gm n . If there are
reductions Fm n ⇝ Gm n ⇝ · · ·⇝ Hm n , we write Fm n

∗
⇝ Hm n . A reduction Fm n ⇝ Gm n is

sound if
q

Fm n
yS

I =
q

Gm n
yS

I .

A reduction is effectively a directed equation, which we will apply to circuits in SCircΣ. This means
that the only equations that hold ‘on the nose’ are the axioms of STMCs; diagrams can be deformed
in order to expose redexes. To mechanise the reduction process it is also preferable to appeal to the
graphical notation and use graph rewriting [GK23].

4.1 Non-delay-guarded feedback
Often it is the case that one exhaustively applies some set of reductions until a normal form is reached.
When reasoning with circuits, the presence of the trace means we need to be slightly more careful; for
example, one could end up infinitely unfolding the trace.

We will instead present a more ‘guided’ operational semantics which can still be used to produce
the outputs of a circuit. First we will define some global transformations used to bring a circuit into a
suitable form for evaluation.

Lemma 69 (Global trace-delay form). For a sequential circuit Fm n there exists a combinational circuit

F̂
m
y xy
z

n

x and v ∈ Vz such that Fm n = v F
m n

x
y

z
by axioms of STMCs.

Proof. By applying the axioms of traced categories.
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Figure 4: Productive reductions
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Figure 5: A cyclic combinational circuit with useful output [MSB12, Fig. 1]

This form is evocative of what we saw when mapping fromMealy machines to circuits in the previous
section, but state is defined using delays and values rather than registers.

Definition 70 (Pre-Mealy form). A sequential circuit is in Mealy form if it is in the form
F̂

s
nm

y
x

.

Lemma 71. TheMealy rule in Fig. 4 is sound.

Proof. It is a simple exercise to check the corresponding stream functions.

Corollary 72. For any sequential circuit Fm n , there exists at least one valid application of the Mealy rule.

There is still the non-delay-guarded trace to consider. Circuits that do not have this trace are of
particular interest.

Definition 73 (Mealy form). A sequential circuit Fm n is inMealy form if it is in the form
F̂

s
nm

y

.

We still do not have all the pieces required to translate all circuits into Mealy form.

Example 74. Consider the circuit t using the signature ΣB from Ex. 2. In the stream semantics,
this evaluates to (⊥ ∧ t) ⊔ ((⊥ ∧ t) ∧ t) ⊔ · · · = ⊥ . In the syntactic realm, the instant feedback blocks us
from reaching Mealy form.
Remark 75. In circuit design, it is common to enforce that circuits have no non-delay-guarded feedback;
one might ask should we too should enforce this in order to stick to ‘well-behaved’ circuits. Not only
would this violate the categorical setting of a STMC (the ‘yanking’ equation would no longer hold),
careful use of non-delay-guarded feedback can still result in useful circuits as a clever way of sharing
resources [Mal94; Rie04; MSB12]. The minimal circuit to implement a function often must be constructed
using cycles [Riv77; RB03]!

Example 76. Consider the circuit in Fig. 5 where F and G are arbitrary combinational circuits. The
trapezoidal gate is a multiplexer, which has a vertical control input and horiztonal data inputs. When the
control is f the output is the first data input and when it is t the output is the second data input. (The
behaviour when the control is ⊥ or ⊤ is not important here.) The interpretation of the multiplexer is

s {
(f, x, y) = x

s {
(⊥, x, y) = ⊥ ∧ (x ∨ y)

s {
(t, x, y) = y

s {
(⊤, x, y) = ⊤ ∧ (x ∨ y)

This circuit is already in pre-Mealy form, and has non-delay-guarded feedback. Despite this, it produces
useful output when the control signal is 0 or 1:

q
F

yS

I⋆
(σ)(i) =

q
F G

yC

I⋆
(π2(σ(i))) if π0(σ(i)) = 0

q
F

yS

I⋆
(σ)(i) =

q
G F

yC

I⋆
(π2(σ(i))) if π0(σ(i)) = 1
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A circuit with no delay-guarded feedback implements a (combinational) function as it has no delays.
We need a way of eliminating ‘instant feedback’ from combinational circuits; using a methodology also
applied in [RB12], we turn to the Kleene fixed-point theorem.

Lemma 77. For a monotone function f : Vn+m → Vn and i ∈ N, let f i : Vm → Vn be defined as f0(x) =
f(⊥n, x) and fk+1(x) = f(fk(x), x). Let c be the length of the longest chain in the latticeVn. Then, for j > c,
f c(x) = f j(x).

Proof. Since f is monotone, it has a least fixed point by the Kleene fixed-point theorem. This will either
be some value v or, since V is finite, the ⊤ element. The most iterations of f it would take to obtain this
fixpoint is c, i.e. the function produces a value one step up the lattice each time.

Definition 78 (Iteration). For a combinational circuit F
x x
m n , let its nth iteration F nm

x
n be defined inductively

over n as F 0
n
x

m := Fm
x
n and F k+1

x
n

m :=
F

F k

x
n

m .

Definition 79 (Unrolling). For an interpretation with valuesV, the unrolling of a combinational circuit F
x x
m n ,

written F †m
x
n , is defined as F c+1m

x
n where c is the length of the longest chain in Vx.

Proposition 80. The instant feedback rule IF in Fig. 4 is sound.

Proof. By Lem. 77, applying the circuit c times reaches a fixpoint. The circuit is combinational so each
element of the output JF KSI (σ)(i) is a function: Lem. 77 can be applied to each element.

Example 81. Recall Ex. 74; applying the IF rule unrolls the trace.

t
IF
⇝ t

Example 82. Recall the cyclic combinational circuit from Ex. 76. When applied to some inputs, this can
also be reduced appropriately using IF. We will precompose the circuit with values so it only produces
interesting output on the first tick, and then reduce it using equations in C.

f

G

F

t

Note that the control switch is set to f. We then apply IF to eliminate the feedback loop.

f

G

F

t
f

G

F

t
f

G

F

t

This is a circuit with the same semantics as the original circuit, but cycle-free.
Any circuit can now be brought into Mealy form.

Theorem 83. For a sequential circuit Fm n , there exist at least one combinational circuit F̂
x x
m n and values

s ∈ Vx such that Fm n
∗
⇝ F

s
nm
by applyingMealy followed by IF.

Proof. In SCircΣ/EI , any sequential circuit is equal to a circuit in pre-Mealy form by Def. 70. Then, since
the core is a combinational circuit with a non-delay-guarded trace, it is equal to a circuit without a
non-delay-guarded trace by IF.

If applied locally for every feedback loop, the IF equation would cause an exponential blowup.
However, if a circuit is in global trace-delay form, the equation need only be applied once to the global
loop; although the value of c increases as the number of feedback wires increases, it only does so linearly
in the height of the lattice.
Example 84. Fig. 6 applies Mealy and IF to the the SR latch circuit from Ex. 10, as the longest chain in VB

is 2.
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⊥ ⇝

⊥

Figure 6: Applying Mealy and IF to the SR latch circuit

t
f

t
f

t
f

∗
⇝

t
f

∗
⇝

t

f

Figure 7: Applying combinational reductions to the ‘now’ copy of the circuit in Fig. 6 with inputs tf.

4.2 Productivity
Given a circuit, one common task is to feed it some inputs and simulate its outputs. so the behaviour of
the circuit can be verified. This corresponds to finding reductions such that Fv nm

∗
⇝ G w nm for

any sequential circuit and input values. We will first consider the combinational case.

Lemma 85. The streaming rule Str in Fig. 4 is sound.

The streaming rule says that when a combinational circuit has an input with an instant and a delayed
component, the circuit can be copied so that one copy handles what is happening ‘now’ and the other
handles what is happening ‘later’. The final rules will reduce the ‘now’ copy to values.

Lemma 86 (Value rules). The value rules Fork, Join, Elim and PrimI listed in Fig. 4 are sound.

This is the only step in which exhaustive application is required, as more is involved than just copying
circuit components.

Lemma 87. Applying the productive rules is confluent.

Proof. There are no overlaps between the rules.

Lemma 88. For a combinational circuit F and v ∈ Vm, there exists w ∈ Vn such that applying the productive
value rules exhaustively to Fv terminates at w .

The streaming and the value rules enable a circuit in Mealy form to process inputs.

Corollary 89. For circuit F
s

n

x

vm
there exist t ∈ Vx andw ∈ Vn such that F

s
n

x

vm

∗
⇝

F n

x

m
t

w

by applying Str once followed by the value rules exhaustively.

Example 90. Fig. 7 shows how the ‘now’ copy of the transformed SR latch circuit from Fig. 6 for inputs tf
(a ‘reset’ pulse) is reduced by the combinational rules. The next state is t, the first output is f and the
second is ⊥. The first output (false) is what we would expect given a reset pulse, but the second may
raise an eyebrow. This arises due to the delay; recall that this models inertial delay in the wires rather
than an actual memory element. Subsequently, it will take another cycle to produce the expected output
ft.

By combinining the rules of the previous section with the strategy in this one, we have a procedure
for processing inputs to a circuit.

Corollary 91 (Productivity). For sequential circuit Fm n and inputs v ∈ Vm, there exists w ∈ Vn such that
Fv nm

∗
⇝ G w nm by applyingMealy, IF and Str once successively followed by the value rules exhaustively.
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4.3 Observational equivalence
Earlier we presented the notion of denotational equivalence, in which circuits are equivalent if their stream
semantics are equal. Another way of showing equivalence is that of observational equivalence [Mor69].
Observational (or extensional) equivalence is the notion that two processes are equivalent if they cannot
be distinguished solely by their input-output behaviour.

Testing equivalence is traditionally shown by checking that a program behaves the same in all contexts.

Notation 92 (Waveform). The empty waveform is defined as εn n := n n . Given values v ∈ Vn and
sequence w ∈ (Vn)⋆, the waveform for sequence v :: w is drawn as v :: wn n := w v .

Observational equivalence also has a relational definition [Gor98]. A relation is adequate if it only
relates circuits that have the same denotational semantics; observational equivalence is the largest
adequate congruence relation. To define such a relation for digital circuits, we will consider the inputs
needed to ‘fully evaluate’ the behaviour of a circuit.

Lemma 93. Let F be a sequential circuit with c delay components. Then applying Cor. 91 successively to a
Mealy form of this circuit will produce at most |V|c unique states.

Proof. The only varying elements of the state word are contributed by the c delay components, as the
values transition to ⊥.

Corollary 94. Given a circuit in Mealy form
F̂

s
nm

x

and input sequence v ∈ (Vm)⋆ of length |V|c + 1,
there exists a state r ∈ Vx, an input sequence u ∈ (Vm)⋆ and output sequences w, z ∈ (Vn)⋆ such that applying
Cor. 91 yields the following reduction pattern:

F̂
s

v

∗
⇝

F̂
r

u w

∗
⇝

F̂
r

z w

Proof. By Lem. 93.

With this in mind, we can now define an adequate notion of observational equivalence for sequential
circuits.

Definition 95 (Observational equivalence of circuits). We sat that two sequential circuits Fm n and Gm n

with no more than c delays are said to be observationally equivalent under I , written F ∼I G if applying
productivity produces the same output waveforms for all input waveforms v ∈ (Vm)⋆ of length |Vc|+ 1.

Theorem 96. Given two sequential circuits Fm n and Gm n , Fm n ∼I Gm n if and only if
q

Fm n
yS

I =
q

Gm n
yS

I .

Proof. The (⇒) direction follows by Cor. 94, as every possible internal configuration of the circuit will
be tested. For (⇐), if

q
Fm n

yS

I =
q

Gm n
yS

I , then this means
q

Fm n
yS

I (v :: σ) =
q

Gm n
yS

I (v :: σ) for
any σ, τ ∈ (Vm)

ω . By definition of J−KSI , we then have that
q

Fv nm
yS

I (σ) =
q

Gv nm
yS

I (σ). Since
this holds for all sequences v, it must hold for those of length |V|c + 1, so the condition for observational
equivalence is met.

Corollary 97. ∼I is the largest adequate congruence on SCircΣ.

Proof. For∼I to be a congruence it must be preserved by composition, tensor and trace, and for it to be the
largest there must be no denotationally equal circuit it does not relate. These both follow by Thm. 96.

This makes ∼I a suitable notion of observational equivalence for sequential circuits.

Definition 98. Let SCircΣ/∼I be defined as SCircΣ/ ∼I .

Corollary 99. There is an isomorphism SCircΣ/≈I
∼= SCircΣ/∼I .
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= (M1) = (M2) = (BD) F = F † (IF)

Figure 8: Set of Mealy equationsM.

5 Algebraic semantics
The previous section gives an upper bound on the length of waveforms required to establish observational
equivalence, so we have a terminating strategy for comparing the behaviour of digital circuits using a
pseudo-normal form. Unfortunately, this is still an exponential upper bound, so it is infeasible to check for
equivalence of circuits with more than a few delay components.

It is often the case that circuits differ by only a few components; perhaps one is trying to show that
two similar implementations are the same. In this case, it is more feasible to find the parts of the circuit
that differ and then check if they have the same behaviour. With the syntactic representation, we can
reason about these subcircuits algebraically using equations. The final contribution of this paper is to
define a sound and complete algebraic semantics for sequential circuits.
Remark 100. An ‘equational theory’ was presented in [GJ16], but the equations were used to quotient
the syntax as an ad-hoc semantics, and soundness and completeness were not considered. Here we use
the stream semantics to guide our choice in equations.

5.1 Mealy equations
We will begin by reframing the Mealy rules as equations for translating circuits into Mealy form. Rather
than porting the largeMealy rule across directly, we will express it in terms of smaller equations.

Definition 101. Let M be the set of equations in Fig. 8.

Proposition 102. Given a sequential circuit F , there exists a circuit inMealy form such that F =
F̂

s

in SCircΣ/M.

Proof. Registers are created from delays by M1
= and values by v

M2
=

v BD
=

v .

5.2 Normalising circuits
One might wonder if completeness of an equational theory could be established by translating two
circuits to Mealy forms with the same state, and then using combinational equations to translate between
the combinational cores. Unfortunately, this is not sufficient.
Example 103. Consider the following circuit in SCircΣB

:

tf tf

The registers will always contain f and t and both circuits will produce a constant f output, so a complete
equational theory should be able to translate between them. To this end, we assemble these into Mealy
forms with the same initial states:

f

t

f

t

The combinational cores do not have the same semantics! They only act the same because they receive
certain inputs from V3.

This example shows that we need to take into the context when defining equations; equations that
only deal with the interactions between individual generators will not suffice.

Instead, we will define a family of equations for translating between bisimilar circuits. Recall that in a
functionally complete interpretation, there is a normalised circuit ||f || ∈ SCircΣ for any function f . With
the right set of equations, the combinational core of a circuit in Mealy form can be translated into such a
canonical form; from this one can read off a truth table.
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= (C1) = (C2)

= (C3) = (C4)

A⊗B
A⊗B
A⊗B = B

A

A

B

A
B (CCC) A⊗B = A

B (CCU)

B
B

FA = A
F

F

B

B
(NC) A F = (ND)

Figure 9: Equations that hold in any Cartesian category

n
n

pm =
p

p

n

n
m (PF) v =

v

v
(F) = (DF)

v = (E) m p = m (PE) Fm

x

= m (TD)

= (C1) = (C3) = (C4)

= (FJ) = (JF) = (JE)

Figure 10: Set C of local Cartesian equations

Definition 104. For a functionally complete interpretation I, a set of equations NI is normalising if any
combinational circuit Fm 1 is equal to a circuit in the image of ||−|| by equations in NI .

Example 105. The normalising equations for the Belnap interpretation are detailed in Appendix A.2.
A set of normalising equations translates a combinational core into something from which it is easy

to read off a truth table. However, it is necessary to distuiguish which outputs of the core contribute to to
the next state and which to the output of the circuit.

Definition 106. A sequential circuit is in normalisedMealy form if it is in the form s
F0

F1
m

n

x

where F0

and F1 are normalised circuits. Given such a circuit, we write F−1
0 : Vx+m → Vx and F−1

1 : Vx+m → Vn

for the functions that satisfy ||F−1
0 || = F0 and ||F−1

1 || = F1 .

The equations inNI will not necessarily translate a circuit into normalisedMealy form, as the transition
and output may be tangled up; we need a way to copy components so that there is a clear distinction
between the two circuits.

Definition 107 (Cartesian category [Fox76]). A category is Cartesian if its tensor product is given by the
Cartesian product, or, equivalently, if it satisfies the equations in Fig. 9.

We could quotient SCircΣ by the equations in Fig. 9, but we prefer to use a finite number of equations.

Definition 108. Let C be defined as the set of equations in Fig. 10.

Remark 109. Note that (FJ) and (JF) induce equations on the ‘composite’ forks and joins from Not. 5.

Lemma 110. = holds in SCircΣ/C

Proof. (C3)
=

(C3)
=

(C4)
=

(C3)
=

(C3)
=

Lemma 111. For any sequential circuit Fm
n
p ,

m
F

F p

p
n

n

= m
F

F p

p
n

n

holds in SCircΣ/C.
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Proof. This is by induction over the structure of the circuit F . First we must check the base cases. For
g :

m
g

g n

n

p

p (PF)
= g n

n

m

p

p (FJ)
= gm

n
p
n
p

(PF)
= m

g

g n

n

p

p

For we first check if only one of the outputs are joined:

Lem. 110
=

(FJ)
=

Lem. 110
=

And now if both outputs are joined:

(JF)
=

(FJ)
=

Lem. 110
=

For :
(JF)
=

(FJ)
=

(JF)
=

For :
(DF)
=

(FJ)
=

(DF)
=

The proofs for , and are trivial, as are the inductive cases for composition and tensor. For the
inductive case for the trace, axioms of STMCs are applied in reverse to create two ‘global traces’, and then
the inductive hypothesis is applied to reach the final result.

Proposition 112. SCircΣ/C + IF is Cartesian.

Proof. We need to show that the two equations in Fig. 9 hold. The naturality of the copy for the generators,
composition and tensor is immediate by the relevant equations in Fig. 10. For trace it is more involved:

m F
STMC
= m F n

n

(FJ)
=

m F n
n

STMC
= m F n

n

IH
=

m n
n

F

F

STMC
=

m n
n

F

F

Lem. 111
=

m n
n

F

F

STMC
= m

n

n

F

F

The naturality of the stub for the generators, composition and tensor is again immediate by equations
in Fig. 10. For the trace the circuit can be brought into global trace-delay form, followed by using (IF) and
(DD).

Cartesian categories allow us to ‘isolate’ outputs.

Lemma 113. In a Cartesian category, Fm
x
n =

F

F

x

n

.

Proof. Fm
n

(M1,M2)
= Fm

n

(NC)
=

F

F
m

n

By repeatedly applying Lem. 113 to a circuit in Mealy form, a copy of the core F can be made for
the transition and output.
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s F

G

x

= γ≤(s)
F≤
0

G≤
1

y

(EC)
F , G

normalised

Figure 11: The encoding equation

Lemma 114. In SCircΣ/(M+ IF+ C +NI), any sequential circuit Fm n is equal to a circuit in normalised
Mealy form.

Proof. Any circuit can be brought to Mealy form usingM+ IF by Thm. 83; normalisedMealy form follows
using C +NI .

5.3 Circuit encodings
The normalised Mealy form may not be unique: even if the states are the same size, there are multiple
orderings.

In the construction of a circuit from a Mealy machine using ||−||≤I , each state was encoded as a word
containing only ⊥ and ⊤ values. The equations we will now add translate any circuit in normalised
Mealy form using such an encoding. First we compute the possible state words of a circuit.

Definition 115 (Circuit states). Given a circuit in normalised Mealy form s
F0

F1
m

n

x

, let S(F0, s) ⊆ Vx

be the smallest set containing s and closed under r 7→ F−1
0 (r, v) for any v ∈ Vm.

For encodings as in Def. 51, a circuit with y states must be translated into a circuit with a state word
inVy .

Definition 116 (Translations). Let S ⊆ Vx be a set of states with total order ≤, and let γ≤ : S → Vy be the
induced ≤-encoding.

For a circuit F
x

x
m := ||f || , its γ≤-transition is the circuit F≤

0

x
n

m := ||(s, v) 7→ γ≤(f(γ
−1
≤ (s), v))||.

Similarly, for a circuit G
x

n
m := ||g||, its γ≤-output is the circuit F≤

1

x
n

m ::= ||(s, v) 7→ g(γ−1
≤ (s), v)||.

Proposition 117 (Encoding equation). For two normalised circuits F
x

x
m and G

x
n

m along with s ∈ Vx, let
≤ be an ordering on S(F, s). Then the equation in Fig. 11 is sound.

Proof. The interpretations of F≤
0

x
x

m and G≤
1

x
n

m are as the behaviours of F
x

x
m and G

x
x

m wrapped in
appropriate decodings and encodings.

The encoding equation transforms a normalised Mealy form into one where the state is just ⊥ and ⊤
values.

Definition 118. Let EI be defined as M+ IF+ C +NI + EC, and let SCircΣ/EI be defined as SCircΣ/EI .

With this set of equations, we have a sound and complete algebraic semantics for sequential circuits.

Theorem 119. In a functionally complete interpretation I, Fm n = Gm n in SCircΣ/EI if and only if
q

F
yS

I =
q

G
yS

I .

Proof. All the equations are sound, so we only need to consider the (⇐) direction. By Lem. 114, the two
circuits can be brought to normalised Mealy form using M+ IF+ C +NI . By Def. 62 and Cor. 65 there

must exist a circuit H := s T

O
such that

q
F

yS

I =
q

H
yS

I =
q

G
yS

I . The circuit H

is encoded such that the state words are in the image of γ≤. This means that applying the encoding
equation with ≤ to the normalised Mealy forms obtained above will yield the circuit H .

Corollary 120. SCircΣ/≈I
∼= SCircΣ/EI .
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StreamI SCircΣ/≈I

SCircΣ SCircΣ/EI

MealyI SCircΣ/∼I

⟨⟨−⟩⟩I

∼=

J−KSI

[−]I

/≈

/E

/∼

∼=

!(−)

||−||≤I

∼=

Figure 12: Relating categorical models of circuits

6 Conclusion
We have presented three ways of showing equivalence of circuits: denotationally by using the stream
semantics, operationally by using the productive reduction strategy, and algebraically by using the sound
and complete equational theory. This completes the research programme initiated by [GJ16; GJL17]. A
summary of the categories involved is shown in Fig. 12.

String diagrams as a graphical syntax formonoidal categorieswere introduced a fewdecades ago [JS91;
JSV96], and there has since been an explosion in their use for various applications, such as cyclic lambda
calculi [Has97], fixpoint operators [Has03], quantum protocols [AC04], signal flow diagrams [BSZ14;
BSZ15], linear algebra [BSZ17; Zan15; Bon+19; BP22], dynamical systems [BE15; FSR16], electrical
circuits [BS22] and automatic differentiation [Alv+23]. While all these frameworks use compositionality
in some way, the nature of digital circuits mean they differ to ours. In many of the above applications,
the join and the fork form a Frobenius structure, making the wires bidirectional. This means the trace is
constructed as f , which degenerates to f in our Cartesian setting. Indeed, in any compact
closed category the product would automatically be a coproduct (biproduct), which is a degeneracy
incompatible with models of digital circuits.

There are other settings that permit loops but retain unidirectionality of wires. Categories with feedback
were introduced in [KSW02] as a weakening of STMCs that removes the yanking axiom, enforcing
that all traces are delay-guarded. In [Di +21] Mealy machines are characterised as a category with
feedback: this is compatible with our framework since all ‘instant feedback’ is expressed as fixpoints and
only delay-guarded feedback remains. Categories with delayed trace [SK19] weaken the notion further by
removing the sliding axiom; this prohibits the unfolding rule so would be unsuitable.

Axiomatising fixpoint operators has been studied extensively [BÉ93; Ste00; SP00]. Since any Cartesian
traced category admits a fixpoint (or Conway) operator [Has97], these equations can be expressed using
the Cartesian equations and axioms of STMCs. Since our work takes place in a finite lattice, we are able
express a fixpoint by iterating the circuit a finite number of times. While this result is well-known from
the denotational perspective [SLG94], it has not been used before, perhaps surprisingly, to solve the
problem of combinational feedback. The interplay of causal streams and dataflow categories has also
been studied elsewhere: recently, a generalisation of causal streams known as monoidal streams [DS22]
has been developed to provide semantics to dataflow programming. Although this generalises some
aspects of this paper, our approach differs in the use of the finite lattice and monotone functions.

The correspondence between Mealy machines and digital circuits is a fundamental result in automata
theory [Mea55] applied extensively in circuit design [KJ09]. The links between Mealy machines and
causal stream functions using coalgebras is a more recent development [Rut05a; Rut05b; Rut06]. Mealy
machines over meet-semilattices are introduced in [BRS08] to model a logical framework which includes
a fixpoint. We also employ this technique in order to handle fixpoints, but also assemble (monotone)
Mealy machines into a PROP in order to bridge between between stream functions and sequential circuits.

Sring diagrams are not efficient to work with computationally. Instead they must be translated into
combinatorial graphs; this was touched on in [GJL17] using framed point graphs [Kis12]. Recent work
in string diagram rewriting [Bon+22a; Bon+22b; Bon+22c] has used hypergraphs for rewriting modulo
Frobenius structure. This framework has been adapted for categories with a (co)monoid structure [FL23;
MPZ23], and traced comonoid structure [GK23]: the setting in which we model digital circuits. We have
already begun to develop an automated framework for rewriting circuits based on this work.
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[BSZ14] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. “A Categorical Semantics of Signal
Flow Graphs”. In: CONCUR 2014 – Concurrency Theory. Ed. by Paolo Baldan and Daniele
Gorla. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2014, pp. 435–450.
isbn: 978-3-662-44584-6. doi: 10.1007/978-3-662-44584-6_30.
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A Results for Belnap logic
The interpretation used throughout this paper has been Belnap’s four value logic. In this section we will
sketch out how this interpretation satisfies the requirements to be suitable for the fully compositional
framework.

A.1 Functional completeness
The results of Section 3.2 and Section 5 depend on an interpretation being functionally complete (Def. 54).

Definition 121. Let B := {0, 1} be the set of Boolean values, and let ∧B,∨B,¬B be the usual operations on
Booleans.

Lemma 122. The set {0, 1,∧B,∨B,¬B} is functionally complete for all functions Bm → B.

Proof. Let f : Bm → B be a Boolean function: we need to create a Boolean expression using variables
v0, v1, . . . , vm−1. For each v ∈ Bm, we construct a conjunction of allm variables, in which vi is negated if
v(i) = 0. We can then define a disjunction of the conjunctions for words v such that f(v) = 1. If there
are no such words, then the expression is 0. It is simple to check that this expression is equivalent to the
original function.

We now turn our attention to Belnap values. The aim is to show completeness of the Belnap functions
using the known results for Boolean functions. First, we shed some light on what a Belnap value really is.

Lemma 123. There is an isomorphism V ∼= B2.

Proof. There are several mappings one could choose, but for the purpose of this section we will use
ϕ := ⊥ 7→ 00, f 7→ 10, t 7→ 01,⊤ 7→ 11.
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The Belnap values f and ⊤ are falsy; they contain false information. Similarly, the Belnap values t and
⊤ are truthy: they contain true information. The value ⊥ is neither falsy nor truthy. This is reflected in
the mapping shown above; ϕ(v)(0) is 1 if and only if v is falsy, and ϕ(v)(1) is 1 if and only if v is truthy.
We write ϕ0(v) := ϕ(v)(0) and ϕ1(v) := ϕ(v)(1).

This illuminates a new path: rather than trying to divine an expression directly from a Belnap function,
we can instead define two functions; one for how falsy the output is, and one for how truthy is.

Definition 124. Let V0 := {⊥, f} and let V1 : +{⊥, t}.

Note that for v ∈ V0, ϕ(v)(1) = 0, and for v′ ∈ V1, ϕ(v)(0) = 0.

Lemma 125. V0 andV1 are closed under ∧ and ∨.

Proof. This can be verified by inspecting the truth tables:

∧ ⊥ f
⊥ ⊥ f
f f f

∨ ⊥ f
⊥ ⊥ ⊥
f ⊥ f

∧ ⊥ t
⊥ ⊥ ⊥
t ⊥ t

∨ ⊥ t
⊥ ⊥ t
t t t

These should truth tables should look familiar; indeed, if one squints a little we recover the truth
tables for ∨B and ∧B on the first row, and for ∧B and ∨B on the second! This means that any expression
we make using ∧B and ∨B in the Boolean realm can be ‘simulated’ in the two Belnap subsets. Formally,
we have the following.

Lemma 126. The following diagrams commute:

(V0)
2 V0

B2 B

∧

(ϕ0,ϕ0) ϕ

∨B

(V0)
2 V0

B2 B

∨

(ϕ0,ϕ0) ϕ

∧B

(V1)
2 V1

B2 B

∧

(ϕ1,ϕ1) ϕ0

∧B

(V1)
2 V1

B2 B

∨

(ϕ1,ϕ1) ϕ1

∨B

Proof. By testing the four values in each case.

The eager reader might now assume we can proceed as with Lem. 122, constructing a disjunctive
normal form from truth tables, but we replace Boolean operations with the appropriate Belnap ones. The
more cautious reader may have noticed we have not discussed how the Boolean ¬B can be simulated
using Belnap operations. This is because it is simply not possible to do this while remaining in the two
Belnap subsets! Fortunately, there is a certain subset of Boolean functions that can be constructed without
using ¬B.

Definition 127. Let the total order ≤B be defined as 0 ≤ 1.

As withV, Bm inherits the order on B pointwise. Subsequently, a Boolean function f : Bm → B is
monotone if f(v) ≤B f(w)whenever v ≤B w. Intuitively, flipping an input bit from 0 to 1 can never flip
an output bit from 1 to 0.

Lemma 128. The set of Boolean operations {∧,∨, 1} is functionally complete for monotone functions Bm → B.

Proof. This progresses as with Lem. 122, but if the element of a word v(i) = 0, it is omitted from the
conjunction rather than the variable being negated.

To show that this expresses the same truth table as the original function, consider an omitted variable
vi; there exists an assignment of the other variables such that if vi = 0 then f(. . . , vi, . . . ) = 1. By
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monotonicity, it must be the case that if vi = 1 then f(. . . , vi, . . . ) = 1, so no information is lost by
omitting the negation.

If f(0, 0, . . . , 0) = 1, then the inner conjunction is empty and must instead be represented by the
constant 1, (the unit of ∧B). This is again valid due to monotonicity, as if f produces 1 for the infimum,
then it must produce 1 for all inputs.

Corollary 129. The set {∧,∨, f} is functionally complete for monotone functions (V0)
m → V0, and the set

{∧,∨, t} is functionally complete for monotone functions (V1)
m → V1.

Proof. As there is an order isomorphismV0
∼= V1

∼= B, any monotone function in the Belnap subsets can
be viewed as a monotone Boolean function. This means the strategy of Lem. 128 can be applied using
Lem. 126 to substitute the appropriate Belnap operation.

All the pieces are now in place to express the final functional completeness result; we just need to
‘explode’ a Belnap value into its falsy and truthy components, and then unify the two at the end.

Definition 130. Let the functions

ψ0
0 , ψ

1
0 : V → V0 ψ0

1 , ψ
1
1 : V → V1

be defined according to the tables below.

ψ0
0 ψ1

0 ψ0
1 ψ1

1

⊥ ⊥ ⊥ ⊥ ⊥
t ⊥ f ⊥ t
f f ⊥ t ⊥
⊤ f f t t

The functions ψ0
0 and ψ0

1 sends a Belnap value v to f or t respectively if v is falsy. Similarly, ψ1
0 and ψ1

1

sends a Belnap value v to f or t if v is truthy. Otherwise, they produce ⊥.

Lemma 131. The functions in Def. 130 can be constructed using the set {∧,∨,¬,⊥}.

Proof. From left to right, the columns in the table above are the functions v 7→ − ∧ ⊥, v 7→ ¬(− ∨ ⊥),
v 7→ ¬(− ∧⊥) and v 7→ − ∨ ⊥.

Definition 132. Let f : Vm → V be amonotone function. Then, let f0 : ((V0)
m)2 → V0 be defined as f0(ψ0

0(v), ψ
1
0(v)) :=

ϕ0(f(v)). Similarly, let f1 : ((V1)
m)2 → V1 be defined as f1(ψ0

1(v), ψ
1
1(v)) := ϕ1(f(v)).

Theorem 133. The set {∧,∨,¬,⊔,⊥, t, f} is functionally complete for monotone functionsVm → V.

Proof. This follows by defining a function with the same behaviour as the original, but made up of
components known to be expressible using the operations specified.

Let f ′ : Vm → V2 be defined as

f ′(v) :=
(
f0(ψ

0
0(v), ψ

1
0(v)), f1(ψ

0
1(v), ψ

1
1(v))

)
.

By Cor. 129, f0 and f1 can be defined using {∧,∨, t, f}, and by Lem. 131, ψ0
0 , ψ

1
0 , ψ

0
1 and ψ1

1 can be defined
using {∧,∨,⊥}.

The output of f ′(v) is (ϕ0(f(v)), ϕ1(f(v))) by definition; the falsiness and the truthiness of f(v). To
combine the two outputs into a single output we want to implement the following truth table:

⊥ ⊥ ⊥
⊥ t t
f ⊥ f
f t ⊤

But this is clearly just the truth table for⊔, so the entire expression can be definedusing {∧,∨,¬,⊔,⊥, t, f}.

Example 134. Consider the following truth table (in fact just the table for ¬).

⊥ ⊥
t f
f t
⊤ ⊤
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=

(Exp)

=

(BotJoinAnd)

=

(BotJoinOr)

= (DM1)

= (DM2)

= (NotFork) = (AndFork) = (OrFork)

= (JF)

= (BotFork) = (AndIdem) = (OrIdem)

= (AndOrDist) = (OrAndDist)

= (ForkComm)

= (BotAnd) = (BotOr) = (BotNot) = (DNE)

Figure 13: Set X of explosion equations

We translate these into the falsy and truthy tables as follows:

⊥⊥ ⊥
⊥f f
f⊥ ⊥
ff f

⊥⊥ ⊥
⊥t ⊥
t⊥ t
tt t

Using Cor. 129, the corresponding Belnap expressions are (v0, v1) 7→ v0 ∧ (v0 ∨ v1) and (v0, v1) 7→
v1 ∨ (v0 ∧ v1). Adding in the translations from Def. 130 and the join at the end, the overall Belnap
expression becomes (v0, v1) 7→ (v0 ∧ ⊥) ∧ ((v0 ∧ ⊥) ∨ ¬(v1 ∨ ⊥)) ⊔ (v1 ∨ ⊥) ∨ (¬(v0 ∧ ⊥) ∧ (v1 ∨ ⊥)).

Corollary 135. The set of Belnap operations {∧,∨,¬,⊥,⊔} is sufficient to implement all monotone functions
Vm+1 → Vn.

Proof. By repeating the process in Thm. 133 for each output.

Since an expression can be defining using only operations with counterparts in the syntactic realm, it is

possible to define amap ||−||B : FuncIB
→ SCircΣB

such that ||f ||B is a termof the form
F0

F1

,

in which F0 and F1 are ‘syntactic’ conjunctive and disjunctive normal forms respectively. The exact
definition of these terms is fiddly and tedious to define, but one can easily imagine what they might look
like.

A.2 Canonical form
For a sound and complete equational theory, equations required to bring any combinational syntactic
circuit into a form defined above.

Definition 136. Let the set X of explosion equations be defined as in Fig. 13

Most of the equations in X are well-known; the only interesting one is (Exp). This says that we can
always ‘explode’ a wire into (trivial) falsy and truthy subcircuits before joining them back together.
While on its own this may not seem very useful, when combined with the other equations it sets the stage
for translating an entire circuit into an exploded form.

Lemma 137. The equations in Fig. 13 are sound.

Proof. By checking all the inputs.
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Lemma 138. For any combinational Belnap circuit Fm n , the equation F =
F

F
in CCircΣB

/X .

Proof. This follows for the base cases by applying AndFork, OrFork, NotFork and JF; the inductive cases
are then trivial.

Proposition 139. Given a combinational Belnap circuit Fm 1 , there exists combinational Belnap circuits F04m 1

and F14m 1 containing no or generators, such that

Fm 1 = m

F0

F1

1 .

Proof. If F is just the identity, then it can be transformed into the desired form with (Exp). Since F

has codomain 1 it cannot be a symmetry. For the other generators, (Exp) can first be applied to the output
wire to create the exploded ‘skeleton’. The , , and generators can then be pushed inside

using the other equations in Fig. 13. A similar principle holds for , although as the negation ‘flips’
the translators using (DM1) and (DM2), (ForkComm)must be used to restore the correct order of gates,
and (DNE) used to eliminate the additional gates.

For composition, we assume that the two subcircuits are in the desired form, so we have

F0

F1

G0

G1

.

By Lem. 138, the first circuit can be propagated across the forks at the start of the second circuit, each of
the four ‘translators’ has as input a copy of the first circuit. Using the same strategy as for the base case
the components of the circuit can then be propagated across the translators. To complete the proof we
need to ensure there is exactly one of each translator. Duplicates are handled by Lem. 138. Translators
are flipped between using and when a is propagated across them, but since the same
circuit is applied to each translator the same flip will happen in reverse elsewhere. Therefore the eventual
circuit will be in the correct form.

For tensor, the circuits can be interleaved using axioms of STMCs.

This form already looks very similar to a circuit in the image of ||−|| in that it is the join of two
circuits prefixed by ‘translators’. However, these circuits are not in conjunctive or disjunctive normal
form. Fortunately, there are standard equations for translating ‘ordinary’ Boolean expressions (i.e. those
without joins) into disjunctive and conjunctive normal forms.

Definition 140. Let F be defined as the set of normal form equations listed in Fig. 14.

Definition 141. A circuit F is a conjunction if it only contains gates and no symmetries, and a

disjunction if it only contains gates and no symmetries. A circuit G is in disjunctive normal form if it
can be expressed as a tensor of conjunctions composed with a disjunction, and is in conjunctive normal form if it
can be expressed as a tensor of disjunctions composed with a conjunction.

Proposition 142. Let F be a combinational Belnap circuit containing no or generators. Then
there exists a circuit G containing only forks and symmetries and a Belnap circuit H in conjunctive normal
form such that F = HG in SCircΣB

/F . Simlarly, there exists a circuit G′ containing only forks and
symmetries and a circuit H ′ in disjunctive normal form such that F = H ′G′ in SCircΣB

/P .

Proof. The circuits H and H ′ can be obtained using well-known procedures for obtaining disjunctive
or conjunctive normal form; propagating the ‘root’ gate through the ‘leaf’ gates using distributivity, and
using the other equations to ‘tidy up’ the term until it is in the desired normal form. The terms of forks
and symmetries is then the result of propagating the other gates to the left.
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= (AndAssoc) = (OrAssoc) = (AndComm)

= (OrComm)

= (AndOrDist) = (OrAndDist) = (AndIdem)

= (OrIdem)

= (AndAbsOr) = (OrAbsOr) = (AndFork)

= (AndFork)

= (ForkComm) = (ForkAssoc) = (ForkUnit)

Figure 14: Set F of normal form equations.

Putting these two results together gives us the desired canonical form theorem.

Theorem 143. Let ||−||B : FuncIB
→ CCircΣB

be a map induced by functional completeness of the Belnap
interpretation in the previous section. Given a combinational Belnap circuit F , there exists a circuit G in the
image of ||−||B such that F = G in CCircΣB

/X + F .

Proof. Prop. 139 and Prop. 142 can be applied in sequence to create a circuit of the correct form. By using
(ForkUnit, ForkAssoc and ForkComm) the initial construct of forks and symmetries can be adjusted until it
in the image of ||−||B, however it was initially defined.
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