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Contribution. It is essential that we have ways to verify the correctness of digital circuits and reason with them. Conven-
tionally, this is done by translation into an executable model which can be simulated to observe its behaviour. An alternative
approach, used in software, is to reason syntactically: programs are formulated equationally and can be reduced step by step.
When provided with inputs, the goal of such a system is to apply reductions and derive an output value.

Such an equational system was first presented in [GJ16; GJL17a], in which digital circuits with delay and (instant)
feedback are modelled as morphisms in a freely generated traced cartesian category, or dataflow category [CŞ94; Has97].
However, the presentation was informal and, crucially, not complete, and could not reduce all circuits to a stream of values.
Our work brings this project to its conclusion, formalising the categorical semantics and completing the set of equations.

Syntax. Circuits are defined over a signature.

Definition 1 (Circuit signature). Let Σ be a tuple (V ,•,◦,G) where V is a finite set of values with distinguished elements •,◦ ∈ V ,
and G is a finite set of tuples (g,m) where g is a gate symbol and m ∈ N is its arity.

The distinct elements • and ◦ represent a disconnected wire (a lack of information) and a short circuit (inconsistent information)
respectively: the latter can be thought of as ‘true and false simultaneously’. Using a signature, digital circuits are constructed
as morphisms in a freely generated symmetric traced monoidal category (STMC). To aid in the presentation, we shall use the
graphical calculus of string diagrams [JS91; JSV96; Sel11].

Definition 2 (Sequential circuits). For a signature Σ, let SCircΣ be the symmetric traced monoidal category freely generated over:

v for each v ∈ V gm for each (g,m) ∈ G

The small boxes are values: these represent the signals that can flow through our circuits. Next come the generators for each
gate symbol in our signature, and structural generators for forking, joining and stubbing wires. The final generator is a delay
generator: one can think of this as delaying its inputs for one tick. We write sequential circuits obtained by composing
generators as green squares F

m n . If a circuit is combinational, i.e. it contains no delay or trace, it is drawn in a lighter blue

square F
m n . To avoid clutter, we occasionally omit the backgrounds of generators. When restricted to the combinational

circuits, this work is similar to [Laf03]. Where the approaches diverge is the inclusion of delay and feedback.

Semantics. Circuits specified syntactically have no computational content. To add semantics to circuits, first the signature
must be interpreted in some domain.

Definition 3 (Interpretation). Let Σ = (V ,G) be a signature. A interpretation of Σ is a tuple I = (V,IV ,IG) where V is a finite
lattice, IV is a bijective function V \ {•,◦} →V \ {⊤,⊥}, and IG is a map from each (g,m) ∈ G to a monotone function g : Vm→V.

Example 4. Let Σ⋆ = ({•, t, f,◦},•,◦, {(AND,2), (OR,2), (NOT,1)}) be a signature. In SCircΣ⋆
, the values are , t , f and

; the gates are , and . Let V⋆ be the lattice ({⊥,0,1,⊤},⊑), with the join defined as 0 ⊔ 1 = ⊤ and

the meet defined as 0 ⊓ 1 = ⊥. Let {∧,∨,¬} be the Belnap logic operators [Bel77]: the truth tables are listed in Fig. 1. Let
I⋆ = (V⋆ , {f 7→ 0, t 7→ 1}, {AND 7→ ∧,OR 7→ ∨,NOT 7→ ¬}).
The semantics of circuits is that of stream functions, which take as input a stream and output a stream. In particular, we are
interested in stream functions of the form (Vm)ω→ (Vn)ω.

Definition 5. For an interpretation I = (V,IV ,IG), let StreamI be the prop with morphisms m→ n as stream functions (Vm)ω→
(Vn)ω freely generated over stream functions for values ṽ : 0→ 1 for each v ∈V, defined as ṽ(0) = v and ṽ(i) =⊥; for gates g̃ : m→ 1
for each (g,m) ∈ G defined as g̃(σ )(i) = g(σ (i)); and for delay δ : 1→ 1 defined as δ(σ )(0) =⊥ and δ(σ )(i + 1).

Theorem 6. StreamI is traced.

Definition 7. Let [−]I : SCircΣ→ StreamI be a traced prop morphism, mapping circuits to appropriate stream functions. The
details are omitted, see [GKS22].

If two circuits map to the same semantics in StreamI , we say they are extensionally equivalent, written F
m n ≈I G

m n .

Theorem 8 ([GKS22]). Let SCircΣ,I be the category obtained by quotienting SCircΣ by ≈I . Then there is an isomorphism of
categories SCircΣ,I � StreamI .



Equational reasoning. Circuits of non-equal syntax can have the same semantics as stream functions. However, in general
it is prohibitive to check that the corresponding streams for two circuits are equal [GJL17b]: it is more efficient to reason
equationally. Equations are identities that hold in the quotient category SCircΣ,I . Given a set of equations E, we write

F
m n =E G

m n if F
m n can be rewritten to G

m n by applying equations in E. Note that since we are using
string diagrams, the axioms of STMCs are ‘absorbed’ into the notation and always hold by moving wires and boxes around.

Productivity. A common use of equational reasoning is to take a circuit and reduce it to its stream of output values.

Definition 9 (Productivity). For a set of equations E, a closed sequential circuit F
n is called productive under E if there exist

values v
n and sequential circuit G

n such that F
n =E

G

v
.

A set of equations was presented in [GJ16]. However, they were not complete: these axioms could not necessarily handle
circuits with non-delay-guarded feedback, in which every feedback loop does not pass through a delay generator. While in
some circuits ‘instant feedback’ is useful [Rie04; MSB12], in other cases it can result in an unproductive circuit. To tackle
this, we use Kleene’s fixpoint theorem: since all the gates in an interpretation are monotone, they have a least fixpoint; since
our lattice is finite, we are able to compute it after a finite number of iterations.

Definition 10. For a combinational circuit F
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m
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n
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m . Let I = (V,IV ,IG) be an interpretation and let c be the length of the longest chain in V: the

fixpoint of F

x

m
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n

in I , denoted as F†
m

n

x

, is defined as Fc
m

x

n

.

The complete set of equations C for closed circuits under any interpretation is shown in Fig. 2. An important consequence of
these is that the unfolding rule for circuits with feedback can be derived, illustrated in Fig. 3.

Theorem 11. Any closed sequential circuit F
n is productive under C.

By applying productivity, a sequence of values can be obtained for any sequential circuit F
m n given some inputs v .

This sequence is precisely the corresponding stream obtained using [−]I .

Full abstraction. In the closed case these equations suffice as the input values are propagated across the circuit, with gates
evaluated one by one. However, when faced with an open circuit the equations in C are not sufficient. For example, consider

the circuits and : when interpreted under I⋆ their stream functions are equal by applying de Morgan’s

law. To tackle this we must consider additional equivalences between combinational circuits.
All circuits will include the generators for the fork, join, stub and disconnected wire. Under any interpretation, these four

generators form a bialgebra, so we can add the corresponding axioms listed in to our framework, listed in Fig. 4 . All that
remains is to add equations for equivalences between gates

Definition 12. We say that a set of equations E, where each e ∈ E contains at least one gate, is combinationally complete for
an interpretation I if for all combinational circuits F

m n and G
m n , if

[
F

m n
]
I

=
[

G
m n

]
I

then F
m n =E

G
m n .

Example 13. A set of equations combinationally complete for I⋆ are listed in Fig. 5.

Theorem 14 (Full abstraction). For an interpretation I , let E be a set of equations combinationally complete for I . Then

F
m n =C+B+E G

m n if and only if
[

F
m n

]
I

=
[

G
m n

]
I

.

This allows us to reason purely equationally with digital circuits, instead of appealing to the potentially inefficient stream
semantics. Even so, this does not immediately yield an automatic rewriting framework, as computationally it is difficult to
handle the trace. A suitable strategy for tackling this problem was presented in [GJL17a] using graph rewriting on framed
point graphs; a current thread of work is reworking this using recent work on rewriting with hypergraphs [Bon+16; Kay21].
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Figure 1: The lattice structure on V⋆ , and truth tables for the gates in Σ⋆ under I⋆ .
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Figure 2: The set of equations C for reducing closed circuits.
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Figure 3: Deriving the unfolding rule using equations in C.
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Figure 4: Set B of bialgebra equations.
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Figure 5: A (not necessarily minimal) set of equations P which is combinationally complete for I⋆ , adapted from [RR98].
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[JSV96] André Joyal, Ross Street, and Dominic Verity. “Traced Monoidal Categories”. In: Mathematical Proceedings of the
Cambridge Philosophical Society 119.3 (Apr. 1996), pp. 447–468. issn: 1469-8064, 0305-0041. doi: 10.1017/S0305
004100074338.

[Kay21] George Kaye. “Rewriting Graphically with Symmetric Traced Monoidal Categories”. Mar. 18, 2021. arXiv:
2010.06319.

[Laf03] Yves Lafont. “Towards an Algebraic Theory of Boolean Circuits”. In: Journal of Pure and Applied Algebra 184.2
(Nov. 1, 2003), pp. 257–310. issn: 0022-4049. doi: 10.1016/S0022-4049(03)00069-0.

[MSB12] Michael Mendler, Thomas R. Shiple, and Gérard Berry. “Constructive Boolean Circuits and the Exactness of
Timed Ternary Simulation”. In: Formal methods in system design : an international journal 40.3 (2012), pp. 283–329.
issn: 0925-9856. doi: 10.1007/s10703-012-0144-6.

[Rie04] Marc D. Riedel. “Cyclic Combinational Circuits”. PhD thesis. United States – California: California Institute of
Technology, May 27, 2004. 112 pp. isbn: 9780496071005.

[RR98] Odinaldo Rodrigues and Alessandra Russo. “A Translation Method for Belnap Logic”. In: Imperial College RR
DoC98/7 (1998).

[Sel11] Peter Selinger. “A Survey of Graphical Languages for Monoidal Categories”. In: New Structures for Physics. Ed. by
Bob Coecke. Lecture Notes in Physics. Berlin, Heidelberg: Springer, 2011, pp. 289–355. isbn: 978-3-642-12821-9.
doi: 10.1007/978-3-642-12821-9_4.

https://doi.org/10.1007/978-94-010-1161-7_2
https://doi.org/10.1145/2933575.2935316
https://doi.org/10.1142/9789814447133_0003
https://doi.org/10.1109/FMCAD.2016.7886659
https://doi.org/10.4230/LIPIcs.CSL.2017.24
https://arxiv.org/abs/1703.10247
https://arxiv.org/abs/2201.10456
https://doi.org/10.1007/3-540-62688-3_37
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1017/S0305004100074338
https://arxiv.org/abs/2010.06319
https://doi.org/10.1016/S0022-4049(03)00069-0
https://doi.org/10.1007/s10703-012-0144-6
https://doi.org/10.1007/978-3-642-12821-9_4

	References

